Processing math: 11%

 

Return to computing page for the first course APMA0330
Return to computing page for the second course APMA0340
Return to computing page for the fourth course APMA0360
Return to Mathematica tutorial for the first course APMA0330
Return to Mathematica tutorial for the second course APMA0340
Return to Mathematica tutorial for the fourth course APMA0360
Return to the main page for the course APMA0330
Return to the main page for the course APMA0340
Return to the main page for the course APMA0360
Introduction to Linear Algebra with Mathematica

Notations


List of Symbols

๐”ฝ       field (usualy either โ„š or โ„ or โ„‚)
โ„       field of real numbers
โ„š       field of rational numbers
โ„‚       field of complex numbers
j       imaginary unit (the vector in the positive vertical direction on complex plane โ„‚), so jยฒ = โˆ’1
z*       complex conjugate:   z* = (๐‘Ž + jโ€‰b)* = ๐‘Ž โˆ’ jโ€‰b
ยฏz       complex conjugate:   ยฏz=ยฏ(a+jb)=aโˆ’jb
A*       adjoint matrix: ยฏAT, transpose and complex conjugate.
AT       transpose matrix is obtained by changing the rows into columns.
โ„•       the set nonnegative integers: 0, 1, 2, โ€ฆ
โ„ค       the set of all integers: 0, ยฑ1, ยฑ2, ยฑ3, โ€ฆ
๐•‹       โ„/(2ฯ€โ„ค) unit circle or one-dimensional tores.
O(g(n))       big-oh is also called Bachmannโ€“Landau notation or asymptotic notation: |f(n)|โ‰คM|g(n)| as n โ†’ โˆž.
o(g(n))       little=oh means lim
n!       factorial:    1ยท2ยท3ยท โ‹ฏ ยทn
\displaystyle n^{\underline{m}}       falling factorial   \displaystyle n^{\underline{m}} = n\left( n-1 \right)\left( n-2 \right) \cdots \left( n-m+1 \right)
\displaystyle n^{\overline{m}}       rising factorial (or Pochhammer symbol)   \displaystyle n^{\overline{m}} = n \left( n+1 \right)\left( n+2 \right) \cdots \left( n+m-1 \right)
(2n)!!       double factorial:   (2n)!! = (2n) ยท โ‹ฏ ยท 2 (2nโˆ’2) ยท (2nโˆ’4) ยท
(2n+1)!!       double factorial:   (2n+1)!! = (2n+1) ยท (2nโˆ’1) ยท (2nโˆ’3) ยท โ‹ฏ ยท 1
\displaystyle \binom{n}{k}       binomial coefficient:   \displaystyle \binom{n}{k} = \frac{n^{\underline{k}}}{k!} , where k โˆˆ โ„•
(๐‘Ž, b)       open interval on โ„ (๐‘Ž or b or both can be infinity)
[๐‘Ž, b]       closed interval
|๐‘Ž, b|       any interval with endpoints |๐‘Ž and b; it can be closed, open, or semi-closed
AโˆฉB       intersection of two sets
AโˆชB       union of two sets
\displaystyle \overline{\Omega}       closure of set ฮฉ
โˆ‚ฮฉ       boundary of set ฮฉ
โ‡€       weak convergence: fn โ‡€ f iff โŸจ u | fn โŸฉ โ†’ โŸจ u | f โŸฉ for any u โˆˆ โ„Œ
     
     
     

Vector Spaces

๐”ฝn       direct product of n fields ๐”ฝร—๐”ฝร— โ‹ฏ; ร—๐”ฝ.
โ„n       real Cartesian product
โ„‚n       complex Cartesian product
๐”ฝm,n       set of all mโ€‰ร—โ€‰n matrices
๐”ฝ[x]       Set of polynomials of variable x over field ๐”ฝ, also denoted by โ„˜, โ„˜
๐”ฝโ‰คn[x]       Set of polynomials over field ๐”ฝ of degree less than or equal to n.
๐’ž(A)       Column space of matrix A D49E;
โ„›(A)       Row space of matrix A.
๐’ฉ(A)       Null space of matrix A, also known as the kernel of matrix A.
ker(A)       Kernel or Null space of matrix A, so ker(A) = ๐’ฉ(A).
coker(A)       Cokernel of matrix A is the kernel of adjoint matrix A*.
โŸจ f , g โŸฉ       inner product (in mathematics)
โŸจ f | g โŸฉ       inner product (in physics)
โˆฅยทโˆฅ       norm in a normed space
โ„“ยฒ       or โ„“2 is the set of sequence with norm \displaystyle \| {\bf x} \|_2 = \left( \sum_{i\ge 0} |x_i |^2 \right)^{1/2}
๐”ยฒ[๐‘Ž, b]       set of square integrable (Lebesgue) functions on the interval [๐‘Ž, b]
๐”ยฒ([๐‘Ž, b], w)       set of square integrable (Lebesgue) functions with weight w on the interval [๐‘Ž, b]
โ„ญ[๐‘Ž, b]       set of continuous functions on interval [๐‘Ž, b]
โ„ญm[ฮฉ]       m-times continuously differentiable functions ฮฉ โ†’ โ„‚
๐’ฎ(โ„)       Schwartz functions (smooth functions with rapid decay), also denoted by S(โ„)
๐’ฎ*(โ„)       set of tempered distributions, also denoted by ๐’ฎ'(โ„) or S'(โ„)
     
     

Operators

\displaystyle \texttt{D}       differential or derivative operator in Euler's notation:   \displaystyle \texttt{D} = \frac{\text d}{{\text d}x} with respect to variable x
\displaystyle \frac{{\text d}y}{{\text d}x}       derivative of function y in Leibniz's notation
y'       derivative of function y in Lagrange's notation
\displaystyle \dot{y}       derivative of function y in Newton's notation with respect to time variable: \displaystyle \dot{y} = {\text d}y/{\text d}t
โˆ‚       partial derivative
โˆ‚xu       partial derivative of u with respect to variable x, also denoted as ux or \displaystyle \frac{\partial u}{\partial x}
\displaystyle \hat{p}       momentum operator:   \displaystyle \hat{p} = -{\bf j}\,\hbar\,\partial , where ฤง is Planck's reduced constant
โˆ‡       gradient operator
ฮ”       Laplace operator \displaystyle \Delta = \nabla^2 = \frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} + \frac{\partial^2}{\partial z^2}
โ–ก       d'Alembert operator \displaystyle \square = \frac{\partial^2}{\partial t^2} - c^2 \nabla^2 = \frac{\partial^2}{\partial t^2} - c^2 \left( \frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} + \frac{\partial^2}{\partial z^2} \right)
S[f]       (formal) Fourier series of function f in either exponential form or trigonometric form
S*[f]       conjugate Fourier series
SN(f; x)       N-th partial Fourier sum \displaystyle \sum_{n=-N}^N \hat{f}(n) \,e^{{\bf j} n\pi x/\ell} = \frac{a_0}{2} + \sum_{k=1}^N a_k \cos \frac{k\pi x}{\ell} + b_k \sin \frac{k\pi x}{\ell}
Iโ€‰fโ€‰โ‰ซ       list of Fourier coefficients either in complex or trigonometric form
โ„ฑ\left[ f \right]       Fourier transform \displaystyle {\hat {f}} or โ„ฑ\left[ f \right] or f^F .
โ„ฑ^{-1}\left[ f^F \right]       inverse Fourier transform
fโ˜…g       convolution: f\star g (x) = \int f(y)\,g(x-y)\,{\text d} y
โ„’[ f ]       Laplace transform \displaystyle f^L (\lambda ) or โ„’\left[ f \right] or f^L = \int_0^{\infty} f(t)\,e^{-\lambda t}{\text d} t
โ„’โˆ’1[ fL ]       inverse Laplace transform \displaystyle โ„’^{-1}\left[ f^L \right] = \mbox{P.V.} \frac{1}{2\pi{\bf j}} \int_{h-{\bf j}\infty}^{h+{\bf j}\infty} f^L (\lambda )\,e^{\lambda\,t} {\text d}\lambda
     
     

Functions

lnx       natural logarithm with base e
ฮ“(ฮฝ)       gamma function \displaystyle \Gamma (\nu ) = \int_0^{\infty} t^{\nu -1} e^{-t} {\text d} t
ฯ‡A       characteristic (or indicator) function of a set A
ฮด(x)       delta function of Dirac
H(t)       Heaviside function:   \displaystyle H(t) = \begin{cases} 1, & \quad t> 0, \\ ยฝ , & \quad t = 0, \\ 0, & \quad t < 0 . \end{cases}