Return to computing page for the first course APMA0330
Return to computing page for the second course APMA0340
Return to computing page for the fourth course APMA0360
Return to Mathematica tutorial for the first course APMA0330
Return to Mathematica tutorial for the second course APMA0340
Return to Mathematica tutorial for the fourth course APMA0360
Return to the main page for the course APMA0330
Return to the main page for the course APMA0340
Return to the main page for the course APMA0360
Introduction to Linear Algebra with Mathematica
Glossary
Notations
List of Symbols
๐ฝ | field (usualy either โ or โ or โ) | |
โ | field of real numbers | |
โ | field of rational numbers | |
โ | field of complex numbers | |
j | imaginary unit (the vector in the positive vertical direction on complex plane โ), so jยฒ = โ1 | |
z* | complex conjugate: z* = (๐ + jโb)* = ๐ โ jโb | |
ยฏz | complex conjugate: ยฏz=ยฏ(a+jb)=aโjb | |
A* | adjoint matrix: ยฏAT, transpose and complex conjugate. | |
AT | transpose matrix is obtained by changing the rows into columns. | |
โ | the set nonnegative integers: 0, 1, 2, โฆ | |
โค | the set of all integers: 0, ยฑ1, ยฑ2, ยฑ3, โฆ | |
๐ | โ/(2ฯโค) unit circle or one-dimensional tores. | |
O(g(n)) | big-oh is also called BachmannโLandau notation or asymptotic notation: |f(n)|โคM|g(n)| as n โ โ. | |
o(g(n)) | little=oh means lim | |
n! | factorial: 1ยท2ยท3ยท โฏ ยทn | |
\displaystyle n^{\underline{m}} | falling factorial \displaystyle n^{\underline{m}} = n\left( n-1 \right)\left( n-2 \right) \cdots \left( n-m+1 \right) | |
\displaystyle n^{\overline{m}} | rising factorial (or Pochhammer symbol) \displaystyle n^{\overline{m}} = n \left( n+1 \right)\left( n+2 \right) \cdots \left( n+m-1 \right) | |
(2n)!! | double factorial: (2n)!! = (2n) ยท โฏ ยท 2 (2nโ2) ยท (2nโ4) ยท | |
(2n+1)!! | double factorial: (2n+1)!! = (2n+1) ยท (2nโ1) ยท (2nโ3) ยท โฏ ยท 1 | |
\displaystyle \binom{n}{k} | binomial coefficient: \displaystyle \binom{n}{k} = \frac{n^{\underline{k}}}{k!} , where k โ โ | |
(๐, b) | open interval on โ (๐ or b or both can be infinity) | |
[๐, b] | closed interval | |
|๐, b| | any interval with endpoints |๐ and b; it can be closed, open, or semi-closed | |
AโฉB | intersection of two sets | |
AโชB | union of two sets | |
\displaystyle \overline{\Omega} | closure of set ฮฉ | |
โฮฉ | boundary of set ฮฉ | |
โ | weak convergence: fn โ f iff โจ u | fn โฉ โ โจ u | f โฉ for any u โ โ | |
Vector Spaces
๐ฝn | direct product of n fields ๐ฝร๐ฝร โฏ; ร๐ฝ. | |
โn | real Cartesian product | |
โn | complex Cartesian product | |
๐ฝm,n | set of all mโรโn matrices | |
๐ฝ[x] | Set of polynomials of variable x over field ๐ฝ, also denoted by โ, โ | |
๐ฝโคn[x] | Set of polynomials over field ๐ฝ of degree less than or equal to n. | |
๐(A) | Column space of matrix A D49E; | |
โ(A) | Row space of matrix A. | |
๐ฉ(A) | Null space of matrix A, also known as the kernel of matrix A. | |
ker(A) | Kernel or Null space of matrix A, so ker(A) = ๐ฉ(A). | |
coker(A) | Cokernel of matrix A is the kernel of adjoint matrix A*. | |
โจ f , g โฉ | inner product (in mathematics) | |
โจ f | g โฉ | inner product (in physics) | |
โฅยทโฅ | norm in a normed space | |
โยฒ | or โ2 is the set of sequence with norm \displaystyle \| {\bf x} \|_2 = \left( \sum_{i\ge 0} |x_i |^2 \right)^{1/2} | |
๐ยฒ[๐, b] | set of square integrable (Lebesgue) functions on the interval [๐, b] | |
๐ยฒ([๐, b], w) | set of square integrable (Lebesgue) functions with weight w on the interval [๐, b] | |
โญ[๐, b] | set of continuous functions on interval [๐, b] | |
โญm[ฮฉ] | m-times continuously differentiable functions ฮฉ โ โ | |
๐ฎ(โ) | Schwartz functions (smooth functions with rapid decay), also denoted by S(โ) | |
๐ฎ*(โ) | set of tempered distributions, also denoted by ๐ฎ'(โ) or S'(โ) | |
Operators
\displaystyle \texttt{D} | differential or derivative operator in Euler's notation: \displaystyle \texttt{D} = \frac{\text d}{{\text d}x} with respect to variable x | |
\displaystyle \frac{{\text d}y}{{\text d}x} | derivative of function y in Leibniz's notation | |
y' | derivative of function y in Lagrange's notation | |
\displaystyle \dot{y} | derivative of function y in Newton's notation with respect to time variable: \displaystyle \dot{y} = {\text d}y/{\text d}t | |
โ | partial derivative | |
โxu | partial derivative of u with respect to variable x, also denoted as ux or \displaystyle \frac{\partial u}{\partial x} | |
\displaystyle \hat{p} | momentum operator: \displaystyle \hat{p} = -{\bf j}\,\hbar\,\partial , where ฤง is Planck's reduced constant | |
โ | gradient operator | |
ฮ | Laplace operator \displaystyle \Delta = \nabla^2 = \frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} + \frac{\partial^2}{\partial z^2} | |
โก | d'Alembert operator \displaystyle \square = \frac{\partial^2}{\partial t^2} - c^2 \nabla^2 = \frac{\partial^2}{\partial t^2} - c^2 \left( \frac{\partial^2}{\partial x^2} + \frac{\partial^2}{\partial y^2} + \frac{\partial^2}{\partial z^2} \right) | |
S[f] | (formal) Fourier series of function f in either exponential form or trigonometric form | |
S*[f] | conjugate Fourier series | |
SN(f; x) | N-th partial Fourier sum \displaystyle \sum_{n=-N}^N \hat{f}(n) \,e^{{\bf j} n\pi x/\ell} = \frac{a_0}{2} + \sum_{k=1}^N a_k \cos \frac{k\pi x}{\ell} + b_k \sin \frac{k\pi x}{\ell} | |
Iโfโโซ | list of Fourier coefficients either in complex or trigonometric form | |
โฑ\left[ f \right] | Fourier transform \displaystyle {\hat {f}} or โฑ\left[ f \right] or f^F . | |
โฑ^{-1}\left[ f^F \right] | inverse Fourier transform | |
fโ g | convolution: f\star g (x) = \int f(y)\,g(x-y)\,{\text d} y | |
โ[ f ] | Laplace transform \displaystyle f^L (\lambda ) or โ\left[ f \right] or f^L = \int_0^{\infty} f(t)\,e^{-\lambda t}{\text d} t | |
โโ1[ fL ] | inverse Laplace transform \displaystyle โ^{-1}\left[ f^L \right] = \mbox{P.V.} \frac{1}{2\pi{\bf j}} \int_{h-{\bf j}\infty}^{h+{\bf j}\infty} f^L (\lambda )\,e^{\lambda\,t} {\text d}\lambda | |
Functions
lnx | natural logarithm with base e | |
ฮ(ฮฝ) | gamma function \displaystyle \Gamma (\nu ) = \int_0^{\infty} t^{\nu -1} e^{-t} {\text d} t | |
ฯA | characteristic (or indicator) function of a set A | |
ฮด(x) | delta function of Dirac | |
H(t) | Heaviside function: \displaystyle H(t) = \begin{cases} 1, & \quad t> 0, \\ ยฝ , & \quad t = 0, \\ 0, & \quad t < 0 . \end{cases} | |