Bayes' Theorem |
---|
Revising probabilities when new information is obtained is an important aspect of probability analysis.
Theorem: (Bayes' Theorem)
For two events A and B, the above statement is known as Bayes' little theorem:
The importance of specificity in this example can be seen by calculating that even if sensitivity is raised to 100% and specificity remains at 99% then the probability of the person being a drug user only rises from 33.2% to 33.4%, but if the sensitivity is held at 99% and the specificity is increased to 99.5% then the probability of the person being a drug user rises to about 49.9%.
- 1% of women have breast cancer (and therefore 99% do not).
- 80% of mammograms detect breast cancer when it is there (and therefore 20% miss it).
- 9.6% of mammograms detect breast cancer when it’s not there (and therefore 90.4% correctly return a negative result).
Put in a table, the probabilities look like this:
Tests are not the event. We have a cancer test, separate from the event of actually having cancer. We have a test for spam, separate from the event of actually having a spam message.
Tests are flawed. Tests detect things that don’t exist (false positive), and miss things that do exist (false negative).
Tests give us test probabilities, not the real probabilities. People often consider the test results directly, without considering the errors in the tests.
False positives skew results. Suppose you are searching for something really rare (1 in a million). Even with a good test, it’s likely that a positive result is really a false positive on somebody in the 999,999.
People prefer natural numbers. Saying “100 in 10,000″ rather than “1%” helps people work through the numbers with fewer errors, especially with multiple percentages (“Of those 100, 80 will test positive” rather than “80% of the 1% will test positive”).
Even science is a test. At a philosophical level, scientific experiments can be considered “potentially flawed tests” and need to be treated accordingly. There is a test for a chemical, or a phenomenon, and there is the event of the phenomenon itself. Our tests and measuring equipment have some inherent rate of error.
The table looks like this:
And what was the question again? Oh yes: what’s the chance we really have cancer if we get a positive result. The chance of an event is the number of ways it could happen given all possible outcomes:
Probability = desired event / all possibilities
The chance of getting a real, positive result is .008. The chance of getting any type of positive result is the chance of a true positive plus the chance of a false positive (.008 + 0.09504 = .10304).
So, our chance of cancer is .008/.10304 = 0.0776, or about 7.8%. ■
If A denotes the event that a Type A bag is selected, then, because 75% of the bags are of Type A, Pr(A) = 0.75. If B denotes the event that a Type B bag is selected, then, because 25% of the bags are of Type B, Pr(B) = 0.25. Let R denote the event that the selected bulb produces a red tulip. Then: