
A short lesson on “Precision”
Note: Because (a) the LLM in use, ChatGPT, gives a different answer each time it is asked the same
question; and (b) one Mathematica line of code requires importing from an Excel file, the cells below
are made unevaluatable. The purpose of this static notebook is to illustrate how Artificial Intelligence
may be used with the Wolfram Language

Please evaluate the following recursive relation and tell me the value of the 12th iteration
NestList[11 # - 2 &, 0.2`20, 12]

I will use the Nest function in the Wolfram Language to generate the value of the 12th itera-
tion of the recursive relation you provided.

Used Wolfram Language Evaluator

INPUT

code Nest[11 # - 2 &, 0.2`20, 12]

OUTPUT

0.1999999999999999999`7.503287778101301

Raw Interpreted

The value of the 12th iteration of the recursive relation is approximately 0.2. The Nest func-

tion was used here to apply the function 11 x - 2 to the initial value of 0.2 for 12 iterations,
leading to this result.

Using the same code, the 20th iteration is very close to zero. Why is that?

The operation you're applying in each iteration of the Nest function, 11 x - 2, is essentially
scaling and shifting your previous result. Since the scaling factor is larger than 1, the function

tends to "stretch away" from values near 0 or 2/11.

After a number of iterations, your initial value of 0.2 has been shifted and stretched repeat-
edly such that the values are eventually pulled towards 0, hence you observe the 20th itera-
tion is very close to zero.

This can be shown mathematically: Let's analyze the fixed points of the recursion relation. A
point x* is a fixed point if, when plugged into the recursion relation, it remains unchanged:
11 x* - 2 x*.

Solving this equation gives x*
2

11
.

So, the system will gravitate towards 0 or
2

11
, depending on the initial condition. In this case,

the system is running away from the fixed point, and so it ends up close to zero.

OK, using the same equation for the recursive relation in Excel, please compute - using Excel
and
NOT Mathematica - the value of the 20th iteration

I'm an AI trained to assist with the Wolfram Language, so I don't directly interact with Excel or
other software. However, I can certainly guide you on how you could implement this in Excel.

You would start with 0.2 in one cell (let's say A1).

Then, in cell A2, you would write =11*A1-2 .

Finally, you would copy cell A2 and paste it into cells A3 to A21. The value in cell A21 would
represent the 20th iteration.

Try this in Excel, and compare the results with what we obtained in the Wolfram Language!

The differences you might see are due to the different numerical precision used by the two
software. They use different algorithms to perform the computations, which can result in
slightly differing results, especially for problems that involve recursion and can have a
buildup of numerical imprecision.

Note the last comment from the chat. This is crucial to explaining the difference you see below.

I can make the calculation in Excel. Here is the comparison for 25 iterations. First, I import the 25
successive actual calculations 11*x-2 starting from .2000 that I have created in an Excel file on my

2 MMa v Excel.nb

computer.

In [5] := excel = Import , {"Data", "Example", Range[26], {2}};

Using NestList I compute 25 iterations of the same equation in Mathematica. Notice how the differ-
ence grows as we progress. It starts out at zero but because of Excel’s imprecision, the difference gets
a little larger with each iteration as Excel’s rounding methodology creeps into each successive calcula-
tion. Through the tenth iteration they appear to be the same (the fourth column tells us that, after the
initial value, they are never the same). After 25 iterations, Mathematica is still zero and Excel is more
than 1.7 billion.

In [18] := wolfr = NestList[11 # - 2 &, 0.2`20, 25];

AccountingForm[TableForm[Transpose[{Range[0, 25], wolfr, excel, excel - wolfr}],

TableHeadings {None, {"Iteration", "Wolfram", "Excel", "Difference"}}], DigitBlock 3]

Out[19]//Account ingForm=

Iteration Wolfram Excel Difference

0 0.200 000 000 000 000 000 00 0.2 0.

1 0.200 000 000 000 000 000 0 0.2 0.000 000 000 000 000 166 533

2 0.200 000 000 000 000 000 0.2 0.000 000 000 000 001 942 89

3 0.200 000 000 000 000 00 0.2 0.000 000 000 000 021 482 8

4 0.200 000 000 000 000 0 0.2 0.000 000 000 000 236 422

5 0.200 000 000 000 000 0.2 0.000 000 000 002 600 75

6 0.200 000 000 000 00 0.2 0.000 000 000 028 608 4

7 0.200 000 000 000 0 0.2 0.000 000 000 314 692

8 0.200 000 000 000 0.2 0.000 000 003 461 62

9 0.200 000 000 00 0.2 0.000 000 038 077 8

10 0.200 000 000 0 0.2 0.000 000 418 856

11 0.200 000 000 0.200 005 0.000 004 607 41

12 0.200 000 00 0.200 051 0.000 050 681 5

13 0.200 000 0 0.200 557 0.000 557 497

14 0.200 000 0.206 132 0.006 132 47

15 0.200 00 0.267 457 0.067 457 1

16 0.200 0 0.942 028 0.742 028

17 0.20 8.362 31 8.162 31

18 0.2 89.985 4 89.785 4

19 0. 987.84 987.64

20 0. 10,864.2 10,864.2

21 0. 119,505. 119,505.

22 0. 1,314,549. 1,314,549.

23 0. 14,460,033. 14,460,033.

24 0. 159,060,364. 159,060,364.

25 0. 1,749,664,001. 1,749,664,001.

MMa v Excel.nb 3

