Linear Systems of ODEs

Numerical

 

 

Recurrences

 

 

Solving Algebraic Equations

Computing the solution of some given equation is one of the fundamental problems of numerical analysis. If a real-valued function is differentiable and the derivative is known, then Newton's method may be used to find an approximation to its roots. In Newton's method, an initial guess x_0 for a root of the differentiable function f: R -> R is made. The consecutive iterative steps are defined by

x_{k+1} = x_k - f(x_k) / f' f(x_k) , k=0,1,2,3,\ldots

The function newton_method is used to generate a list of the iteration points. Sage contains a preparser that makes it possible to use certain mathematical constructs such as
f ( x ) = f
that would be syntactically invalid in standard Python. In the program, the last iteration value is printed and the iteration steps are tabulated. The accuracy goal for the root 2h is reached when

f(x_n -h) f(x_n+h)<0

In order to avoid an infinite loop, the maximum number of iterations is limited by the parameter maxn

sage: def newton_method(f, c, maxn, h): 
f(x) = f
iterates = [c]
j = 1
while True:
c = c - f(c)/derivative(f(x))(x=c)
iterates.append(c)
if f(c-h)*f(c+h) < 0 or j == maxn:
break
j += 1
return c, iterate
sage: f(x) = x^2-3
h = 10^-5
initial = 2.0
maxn = 10
z, iterates = newton_method(f, initial, maxn, h/2.0)
print "Root =", z

 

Numerical Integration

Numerical integration methods can prove useful if the integrand is known only at certain points or the antiderivate is very difficult or even mpossible to find. In education, calculating numerical methods by hand may be useful in some cases, but computer programs are usually better suited in finding patterns and comparing different methods. In the next example, three numerical integration methods are implemented in Sage: the midpoint rule, the trapezoidal rule and Simpson's rule. The differences between the exact value of integration and the approximation are tabulated by the number of subintervals n

sage: f(x) = x^2-3
sage: a = 0.0
sage: b = 2.0
sage: table = []
sage: exact = integrate(f(x), x, a, b)
sage: for n in [4, 10, 20, 50, 100]:
....: h = (b-a)/n
....: midpoint = sum([f(a+(i+1/2)*h)*h for i in range(n)])
....: trapezoid = h/2*(f(a) + 2*sum([f(a+i*h) for i in range(1,n)])
....: + f(b))
....: simpson = h/3*(f(a) + sum([4*f(a+i*h) for i in range(1,n,2)])
....: + sum([2*f(a+i*h) for i in range (2,n,2)]) + f(b))
....: table.append([n, h.n(digits=2), (midpoint-exact).n(digits=6),
....: (trapezoid-exact).n(digits=6), (simpson-exact).n(digits=6)])
....: html.table(table, header=["n", "h", "Midpoint rule",
....: "Trapezoidal rule", "Simpson's rule"])

There are also built-in methods for numerical integration in Sage. For instance, it is possible to automatically produce piecewise-defined
line functions defined by the trapezoidal rule or the midpoint rule. These functions can be used to visualize different geometric interpretations of the numerical integration methods. In the next example, midpoint rule is used to calculate an approximation for the definite integral of the function
f(x) =x^2 -5x + 10
over the interval [0;10] using six subintervals

sage: f(x) = x^2-5*x+10
sage: f = Piecewise([[(0,10), f]])
sage: g = f.riemann_sum(6, mode="midpoint")
sage: F = f.plot(color="blue")
sage: R = add([line([[a,0],[a,f(x=a)],[b,f(x=b)],[b,0]], color="red") for (a,b), f in g.list()]
sage: show(F+R)

The Trapezoid Rule approximates the area under a given curve by finding the area under a linear approximation to the curve. The linear segments are given by the secant lines through the endpoints of the subintervals: for f(x)=x^2+1 on [0,2] with 4 subintervals, this looks like:

sage: x = var('x') 
sage: f1(x) = x^2 + 1
sage: f = Piecewise([[(0,2),f1]])
sage: trapezoid_sum = f.trapezoid(4)
sage: P = f.plot(rgbcolor=(0,0,1), plot_points=40)
sage: Q = trapezoid_sum.plot(rgbcolor=(1,0,0), plot_points=40)
sage: L = add([line([[a,0],[a,f(x=a)]], rgbcolor=(1,0,0)) for (a,b), f in trapezoid_sum.list()])
sage: M = line([[2,0],[2,f1(2)]], rgbcolor=(1,0,0))
sage: show(P + Q + L + M)

To integrate the function cos(2*x)^4 +sin(x) we do

sage: numerical_integral(lambda x: cos(2*x)^5 + sin(x),  0, 2*pi)
(2.3561944901923457, 5.322071926740605e-14)

The input can be any callable:

sage: numerical_integral(lambda x: cos(2*x)^5 + sin(x),  0, 2*pi)
(2.3561944901923457, 5.322071926740605e-14)

We check this with a symbolic integration:

sage: (cos(2*x)^4+sin(x)).integral(x,0,2*pi)
3/4*pi

It is possible to integrate on infinite intervals as well by using +Infinity or -Infinity in the interval argument. For example:

sage: f = exp(-2*x)
sage: numerical_integral(f, 0, +Infinity)
(0.4999999999993456, 2.5048509541974486e-07)

We can also numerically integrate symbolic expressions using either this function (which uses GSL) or the native integration (which uses Maxima):

sage: (x^3*sin(1/x)).nintegral(x,0,pi)
(9.874626194990983, 6.585622218041451e-08, 315, 0)
 
     
   

Riemann and trapezoid sums for integrals

Regarding numerical approximation of \(\int_a^bf(x)\, dx\), where \(f\) is a piecewise defined function, can

  • compute (for plotting purposes) the piecewise linear function defined by the trapezoid rule for numerical integration based on a subdivision into \(N\) subintervals
  • the approximation given by the trapezoid rule,
  • compute (for plotting purposes) the piecewise constant function defined by the Riemann sums (left-hand, right-hand, or midpoint) in numerical integration based on a subdivision into \(N\) subintervals,
  • the approximation given by the Riemann sum approximation.
sage: f1(x) = x^2
sage: f2(x) = 5-x^2
sage: f = Piecewise([[(0,1),f1],[(1,2),f2]])
sage: f.trapezoid(4)
Piecewise defined function with 4 parts, [[(0, 1/2), 1/2*x],
[(1/2, 1), 9/2*x - 2], [(1, 3/2), 1/2*x + 2],
[(3/2, 2), -7/2*x + 8]]
sage: f.riemann_sum_integral_approximation(6,mode="right")
19/6
sage: f.integral()
Piecewise defined function with 2 parts,
[[(0, 1), x |--> 1/3*x^3], [(1, 2), x |--> -1/3*x^3 + 5*x - 13/3]]
sage: f.integral(definite=True)
3

Euler Methods

Differentiation:

sage: var('x k w')
(x, k, w)
sage: f = x^3 * e^(k*x) * sin(w*x); f
x^3*e^(k*x)*sin(w*x)
sage: f.diff(x)
w*x^3*cos(w*x)*e^(k*x) + k*x^3*e^(k*x)*sin(w*x) + 3*x^2*e^(k*x)*sin(w*x)
sage: latex(f.diff(x))
w x^{3} \cos\left(w x\right) e^{\left(k x\right)} + k x^{3} e^{\left(k x\right)} \sin\left(w x\right) + 3 \, x^{2} e^{\left(k x\right)} \sin\left(w x\right)

If you type view(f.diff(x)) another window will open up displaying the compiled output. In the notebook, you can enter

var('x k w')
f = x^3 * e^(k*x) * sin(w*x)
show(f)
show(f.diff(x))

into a cell and press shift-enter for a similar result. You can also differentiate and integrate using the commands

R = PolynomialRing(QQ,"x")
x = R.gen()
p = x^2 + 1
show(p.derivative())
show(p.integral())

in a notebook cell, or

sage: R = PolynomialRing(QQ,"x")
sage: x = R.gen()
sage: p = x^2 + 1
sage: p.derivative()
2*x
sage: p.integral()
1/3*x^3 + x

on the command line. At this point you can also type view(p.derivative()) or view(p.integral()) to open a new window with output typeset by LaTeX.

Polynomial Approximations

You can find critical points of a piecewise defined function:

sage: x = PolynomialRing(RationalField(), 'x').gen()
sage: f1 = x^0
sage: f2 = 1-x
sage: f3 = 2*x
sage: f4 = 10*x-x^2
sage: f = Piecewise([[(0,1),f1],[(1,2),f2],[(2,3),f3],[(3,10),f4]])
sage: f.critical_points()
[5.0]

Runge--Kutta Methods

Taylor series:

sage: var('f0 k x')
(f0, k, x)
sage: g = f0/sinh(k*x)^4
sage: g.taylor(x, 0, 3)
-62/945*f0*k^2*x^2 + 11/45*f0 - 2/3*f0/(k^2*x^2) + f0/(k^4*x^4)
sage: maxima(g).powerseries('_SAGE_VAR_x',0)    # TODO: write this without maxima
16*_SAGE_VAR_f0*('sum((2^(2*i1-1)-1)*bern(2*i1)*_SAGE_VAR_k^(2*i1-1)*_SAGE_VAR_x^(2*i1-1)/factorial(2*i1),i1,0,inf))^4

Of course, you can view the LaTeX-ed version of this using view(g.powerseries('x',0)).

The Maclaurin and power series of \(\log({\frac{\sin(x)}{x}})\):

sage: f = log(sin(x)/x)
sage: f.taylor(x, 0, 10)
-1/467775*x^10 - 1/37800*x^8 - 1/2835*x^6 - 1/180*x^4 - 1/6*x^2
sage: [bernoulli(2*i) for i in range(1,7)]
[1/6, -1/30, 1/42, -1/30, 5/66, -691/2730]
sage: maxima(f).powerseries(x,0)    # TODO: write this without maxima
'sum((-1)^i3*2^(2*i3-1)*bern(2*i3)*_SAGE_VAR_x^(2*i3)/(i3*factorial(2*i3)),i3,1,inf)

Integration

Numerical integration is discussed in Riemann and trapezoid sums for integrals below.

Sage can integrate some simple functions on its own:

sage: f = x^3
sage: f.integral(x)
1/4*x^4
sage: integral(x^3,x)
1/4*x^4
sage: f = x*sin(x^2)
sage: integral(f,x)
-1/2*cos(x^2)

Sage can also compute symbolic definite integrals involving limits.

sage: var('x, k, w')
(x, k, w)
sage: f = x^3 * e^(k*x) * sin(w*x)
sage: f.integrate(x)
((24*k^3*w - 24*k*w^3 - (k^6*w + 3*k^4*w^3 + 3*k^2*w^5 + w^7)*x^3 + 6*(k^5*w + 2*k^3*w^3 + k*w^5)*x^2 - 6*(3*k^4*w + 2*k^2*w^3 - w^5)*x)*cos(w*x)*e^(k*x) - (6*k^4 - 36*k^2*w^2 + 6*w^4 - (k^7 + 3*k^5*w^2 + 3*k^3*w^4 + k*w^6)*x^3 + 3*(k^6 + k^4*w^2 - k^2*w^4 - w^6)*x^2 - 6*(k^5 - 2*k^3*w^2 - 3*k*w^4)*x)*e^(k*x)*sin(w*x))/(k^8 + 4*k^6*w^2 + 6*k^4*w^4 + 4*k^2*w^6 + w^8)
sage: integrate(1/x^2, x, 1, infinity)
1

Convolution

You can find the convolution of any piecewise defined function with another (off the domain of definition, they are assumed to be zero). Here is \(f\), \(f*f\), and \(f*f*f\), where \(f(x)=1\), \(0<x<1\):

sage: x = PolynomialRing(QQ, 'x').gen()
sage: f = Piecewise([[(0,1),1*x^0]])
sage: g = f.convolution(f)
sage: h = f.convolution(g)
sage: P = f.plot(); Q = g.plot(rgbcolor=(1,1,0)); R = h.plot(rgbcolor=(0,1,1))

To view this, type show(P+Q+R).

Laplace transforms

If you have a piecewise-defined polynomial function then there is a “native” command for computing Laplace transforms. This calls Maxima but it’s worth noting that Maxima cannot handle (using the direct interface illustrated in the last few examples) this type of computation.

sage: var('x s')
(x, s)
sage: f1(x) = 1
sage: f2(x) = 1-x
sage: f = Piecewise([[(0,1),f1],[(1,2),f2]])
sage: f.laplace(x, s)
-e^(-s)/s + (s + 1)*e^(-2*s)/s^2 + 1/s - e^(-s)/s^2

For other “reasonable” functions, Laplace transforms can be computed using the Maxima interface:

sage: var('k, s, t')
(k, s, t)
sage: f = 1/exp(k*t)
sage: f.laplace(t,s)
1/(k + s)

is one way to compute LT’s and

sage: var('s, t')
(s, t)
sage: f = t^5*exp(t)*sin(t)
sage: L = laplace(f, t, s); L
3840*(s - 1)^5/(s^2 - 2*s + 2)^6 - 3840*(s - 1)^3/(s^2 - 2*s + 2)^5 +
720*(s - 1)/(s^2 - 2*s + 2)^4

is another way.

Ordinary differential equations

Symbolically solving ODEs can be done using Sage interface with Maxima. See

sage:desolvers?

for available commands. Numerical solution of ODEs can be done using Sage interface with Octave (an experimental package), or routines in the GSL (Gnu Scientific Library).

An example, how to solve ODE’s symbolically in Sage using the Maxima interface (do not type the ...):

sage: y=function('y',x); desolve(diff(y,x,2) + 3*x == y, dvar = y, ics = [1,1,1])
3*x - 2*e^(x - 1)
sage: desolve(diff(y,x,2) + 3*x == y, dvar = y)
_K2*e^(-x) + _K1*e^x + 3*x
sage: desolve(diff(y,x) + 3*x == y, dvar = y)
(3*(x + 1)*e^(-x) + _C)*e^x
sage: desolve(diff(y,x) + 3*x == y, dvar = y, ics = [1,1]).expand()
3*x - 5*e^(x - 1) + 3

sage: f=function('f',x); desolve_laplace(diff(f,x,2) == 2*diff(f,x)-f, dvar = f, ics = [0,1,2])
x*e^x + e^x

sage: desolve_laplace(diff(f,x,2) == 2*diff(f,x)-f, dvar = f)
-x*e^x*f(0) + x*e^x*D[0](f)(0) + e^x*f(0)

If you have Octave and gnuplot installed,

sage: octave.de_system_plot(['x+y','x-y'], [1,-1], [0,2]) # optional - octave

yields the two plots \((t,x(t)), (t,y(t))\) on the same graph (the \(t\)-axis is the horizonal axis) of the system of ODEs

\[x' = x+y, x(0) = 1; y' = x-y, y(0) = -1,\]

for \(0 <= t <= 2\). The same result can be obtained by using desolve_system_rk4:

sage: x, y, t = var('x y t')
sage: P=desolve_system_rk4([x+y, x-y], [x,y], ics=[0,1,-1], ivar=t, end_points=2)
sage: p1 = list_plot([[i,j] for i,j,k in P], plotjoined=True)
sage: p2 = list_plot([[i,k] for i,j,k in P], plotjoined=True, color='red')
sage: p1+p2
Graphics object consisting of 2 graphics primitives

Another way this system can be solved is to use the command desolve_system.

sage: t=var('t'); x=function('x',t); y=function('y',t)
sage: des = [diff(x,t) == x+y, diff(y,t) == x-y]
sage: desolve_system(des, [x,y], ics = [0, 1, -1])
[x(t) == cosh(sqrt(2)*t), y(t) == sqrt(2)*sinh(sqrt(2)*t) - cosh(sqrt(2)*t)]

The output of this command is not a pair of functions.

Finally, can solve linear DEs using power series:

sage: R.<t> = PowerSeriesRing(QQ, default_prec=10)
sage: a = 2 - 3*t + 4*t^2 + O(t^10)
sage: b = 3 - 4*t^2 + O(t^7)
sage: f = a.solve_linear_de(prec=5, b=b, f0=3/5)
sage: f
3/5 + 21/5*t + 33/10*t^2 - 38/15*t^3 + 11/24*t^4 + O(t^5)
sage: f.derivative() - a*f - b
O(t^4)

Fourier series of periodic functions

If \(f(x)\) is a piecewise-defined polynomial function on \(-L<x<L\) then the Fourier series

\[f(x) \sim \frac{a_0}{2} + \sum_{n=1}^\infty \left[a_n\cos\left(\frac{n\pi x}{L}\right) + b_n\sin\left(\frac{n\pi x}{L}\right)\right]\]

converges. In addition to computing the coefficients \(a_n,b_n\), it will also compute the partial sums (as a string), plot the partial sums (as a function of \(x\) over \((-L,L)\), for comparison with the plot of \(f(x)\) itself), compute the value of the FS at a point, and similar computations for the cosine series (if \(f(x)\) is even) and the sine series (if \(f(x)\) is odd). Also, it will plot the partial F.S. Cesaro mean sums (a “smoother” partial sum illustrating how the Gibbs phenomenon is mollified).

sage: f1 = lambda x: -1
sage: f2 = lambda x: 2
sage: f = Piecewise([[(0,pi/2),f1],[(pi/2,pi),f2]])
sage: f.fourier_series_cosine_coefficient(5,pi)
-3/5/pi
sage: f.fourier_series_sine_coefficient(2,pi)
-3/pi
sage: f.fourier_series_partial_sum(3,pi)
-3*cos(x)/pi - 3*sin(2*x)/pi + sin(x)/pi + 1/4

Type show(f.plot_fourier_series_partial_sum(15,pi,-5,5)) and show(f.plot_fourier_series_partial_sum_cesaro(15,pi,-5,5)) (and be patient) to view the partial sums.

Table Of Contents

Previous topic

First Order ODEs

Next topic

Second Order ODEs

This Page