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Convergence of the Fourier series of functions from the class
Llog* Llog* log* log* L is proved.

1. Introduction

Let ¢ :[0,+00) — [0,400) be a given non-decreasing function, ¢(0) = 0. Set
T := [0,27) and denote by @(L) = ¢(L)r the set of measurable 2r-periodic
functions f such that

[ s < oo.
i

Let S,(f,z) denote the nth partial sum of Fourier series of the function f at
the point z. Introduce the function

Mf(z):= EhE |Sa(f,2)l, z€T.
n>1

Carleson [1] proved that the Fourier series of any functionf € L? converges
almost everywhere (a.e.). This fact was extended by Hunt [2]. He proved
a.e. convergence of the Fourier series for functions f€LP, p>1, and for
f € L(log* L)2. The basic result of [2] is the following estimate for the
characteristic function xz of an arbitrary set FF C T.

(1) m{zeT: Mxp(z)>y} < (Bpl’y™"mF, y>0, 1<p< oo,
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where B, < const. p?/(p — 1). It follows from (1) (see [3, p. 563]) that

| 1
(2) m{mET:MXp(m)>y}§C’llog(—)mF for 0<y< 3"
y L
with some constant C'. Using (2) Sjolin [3] proved the almost everywhere con-
vergence of Fourier series for functions f from the class L(log* L)(log* log® L).
In this paper we prove the following.

Theorem. If f € L(log® L)(log*log* log™ L), then the Fourier series of

f converges almost everywhere.

We obtain this result from (2) making use of the method from [3] (see our
Lemma 3) and “approximation” of f(z) in the sense of Lemma 2 (point a)
below.

2. Notation

For the sake of simplicity, we set aj := 22 (ag = 2, @3 = 4, a3 = 186,...).
Note that ax = (ak-1)?, k = 1,2,.... For any measurable function f(z) > 0
we define

i [(f(a:)log+ f(z)log* log* log* f(z))dz,

i

where log u = log, u and y* := max {0,y} (—o0 < y < +00). Remark that for
u > 16 the function 9(u) := log uloglog log u is increasing and 1(u?) < 4%(u).
Forsi = 1,2, ., set

M, f(z):= max |S.(f,2)l, <€T.

In what follows C will denote the constant from estimate (2).

3. Preliminary lemmas

Lemma 1. Lete >0, a >0, n € N. Assume that G C T, GG is a measurable
set and f is a measurable function such that 0 < f(z) < a for z € G, and
f(z) = 0 for x ¢ G. Then there exists a set F' C G which satisfies the
Jollowing conditions:

a) m < n implies ||Sm(f,z) — Sm(axr,z)|lc < ¢,



N.Yu. AvTONOV 189

b) [qaxp(z)dz = am(F) = Jo f(z) dz.
Proof. Denote I = [ f(z)dz. If I = 0, then the lemma is obviously true.
G
Assume that I # 0. Let us choose ! such that

2m €

(3) [ S 2t

Introduce the notations
Aij=2mifl,i=0,1,...,1, A;:= [Aioy, As), i=1,...,1

Denote

Gi=Gna;, I ::f_f(:r) k.
Gi

It is easy to see that G'N G = @, ; £1,0 =06, 1< am(G;) and

(4) I'=3¥ 1

=1

We can find a set F* C G* such that m(F*) = I;/a and hence,

(5) [ axri(e) de = [axp(@)de=1; = [ #@) da.

A el A;
Set F :=Uw£=1Fi. Using (4) and (5), we obtain
l i l
f wp () il = Zf ax(z) de= Z/ axpi(e)de =3I =1,
G i=1 G i=] G i=1

and thus b) holds. Let us verify a). For m < n and z € T, we have

1Sm(£,2) = Sm(axr, 2)| = | [ Dl = (7(8) - axe(®))at|
T

l
=13 [ Dule = (5() - axr(e))at

i=1A!

l
=13 [(Puta = 1) = Du(e = A1) - axe(t))dt]

:=1A;
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Using these equalities, as well as (5), (3) and the classical Bernstein inequality
1Dl € m||Dy|c, we obtain

il
1Sm(£,2) = Sm(axr, )] € 3 2max|Doe = 1) = Dl = A9 [ f(t)dt
~ ”iea, g

{
2r £
2
5§Q(m+1 = <}:2(m+1 ——ml(n_l_l)gss-

Lemma 1 is proved.

Lemma 2. Let 1 :[0,400) — [0,+00) be a non-decreasing function such
that Y(u?) < 44p(u) for u > 16. Define ¢(u) := utp(u), u > 0. Let e > 0,
n € N, f(z) € p(L) and for any z € T, f(z) > 16 or f(z) = 0. Then there
erists a sequence of sets Fy,, k =2,3,..., F. c T,F;n F;=0,4i# ], such
that the function g(z) := Y32, arxr, (z) satisfies the following conditions:

a) If m < n, then ||Sm(f,z) = Sm(g,2)llc <,

b) Jr#(9(z))dz < 4 [r o(f(2))dz.

Proof. Fix ¢ > 0, n € N and a function f € (L) such that f(z) > 16.
Define G := {z € T : a4—1 < f(z) ear}, k =2,3,.... Obviously G;NG; = 0

for i # j. Let
= [ f(z), z€Gy,
Ji(z) := {0, z ¢ Gz.

Since f(z) = 322, fr(z) and ¢(0) = 0, we have

CH| A ir=3 [o(senis=3 [ etiie)es
i

In view of Lemma 1, for every fi(z), k = 2,3,..., there existsF; C Gy such
that

(7) Sm(fisz) = Smlakxr, z)llc < 2k
and

®) /G fk(m)a‘zzakm(Fk)=-[G aa, () de
Note tha.t

© / pa@)dr=3 [olo@)dz=3" [ olarxn(@)ds.

k=2 Gy k=2 Gy
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Using (8) and the assumptions on the function ¢, we obtain

j o(aexr, (z)) dz = j Avalxn, () dx = PloxJesm(Fe)
G Gy

= [ feyitade = [ ful@pl(a-?ds < [ Ali(fuz))) do
Gx G Gy

(10) <4 [ A@W@)ds =4 [e(e)ds, k=23,....
Gy

G
It follows from (9), (10) and (6) that

[ eta@)iz <4 [ els@)ds.
T T

Let m < n. From (7) we obtain

[Sm(fs2) = Sm(g,2)lc = Sm(3_(fk = arxr)s2)llc

m k=2‘
= IS Smlfi — akxm2)llc
k=2
[s <}
< Y NSm(fi — arxrs 2)lle
k=2
& &
s Z 2_k < E.
k=2

Lemma 2 is proved.

Lemma 3. Assume that g(z) = Y2, a.xr,(2),F;NF; = 0,4 ¢ j,
J(g) < &. Then there exists a set B with mB < 2 such that Mg(z) €13 for
z ¢ B.

Proof. Denote
En:={z €T:Mxg,(z)>a;'}, E=UZ;E,,
K.:={z€T:a;'n"? < Mxr,(z) < a;'},
(11) Lp:={z €T : Mxp,(z) < a;'n"?}.
It follows from (2) and ( 1) that mE, < Cayloga, mFy, and hence

mE < C z ay loga, mF,

n=2
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= CZfanloganxp“(x)dx

n=2 T

< CZfan log a,, logloglog a,, xF, (¢) dz.
71""2T

According to the definition of J(g) and the assumptions of the lemma,

(12) mE < CJ(g) < 1.

P=

Consider the function Mg(z) = M(En‘;?' anXF,(z)) outside E. We have

fM(Zanxp (m))dz<z f anM(xF,(z))dx

T\E =l
(13) < Zan/ (xF.(z)) dx + Zﬂn/M(XF (z))d=.
n=2 K n=2

It follows from the definition of L,, that

(14) Zan/MXpn:c))m‘(Z—"(S

n=2

We shall now prove the estimate
(15) iy / M(xF,(z))dz < SCf g(z)log g(z)logloglog g(z) dz.
Ky Fn

In order to do this, let u,(A) = m{z € T: M(xF,(z)) > A}. Then

-1
An

an/M(xp“(z))dm - f Adpn(A)

Il
|
2
S
S
=
=
P
>
—

Using (2), we obtain

an/M(X}:‘n(:E))dﬂ:S C'log(ann*)a, mF, + Ca, / Mdz\mf‘n

aTln=2
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IA

s oglaar® b 4 %aﬂ[(log(annz))z —Ced, PlmE

IA

Cay log(ann?)mF, + Caylog(a,n?) — log a,]log(a,n?)mF,
< 8Caylogaylognmk,

= 8Cayloga,loglogloga, mF,
and (15) follows. From (13), (14) and (15), we have

/ M(g(z)) dz < 8C J(g) + 5 < 13.
T\E
Let H = {z € T\E: Mg(z) > 13}. It is easy to see that
(16) mH < 1.

Now we can define the set B. Let B := EU H. According to (12) and (16),
mB < 2, and Mg(z) < 13 for z ¢ B. The lemma is proved.

4. A property of sequences of operators

Let ¢ : [0,400) — [0,+00) be a function such that: (i) ¢(0) = 0, ¢(u)
is convex and increasing on[0,00), (ii) (p(u%) is a concave function of u,
0 < u < co. We need a certain proposition which follows from a theorem of
Stein [4]. Before formulating the result, let us first introduce some definitions.
We say that an operator V is of type (¢, ¢) if there exists a constant A > 0
so that

[evisonde < [eais@)de.
& T

The operator V' commutes with translations if
V(f(-+s),2) =V(f(-),z + ).

Theorem A. [4, p. 154, Theorem 3]. Let V,, be a sequence of linear
operators, each of type (p, ), and which commute with translations. Let ¢
satisfy the conditions (1) and (it). Suppose that for every f € p(L) we have
lim sup,, ey |V (f,2)| < 00, for z in some set of positive measure. Let
V*(f,x) = sup,,5q |Viu(f,2)|. Then there exists a constant A such that

ale s Vi(/5)> a) & fep{%U(x)l)dm, & 0
T
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Lemma 4. Let ¢ satisfy (i) and (it). Forn € N, a € R, A, € L*(T),

assume that

h(f,2) = / An(z = t)f(t)dt + af(z)
T

is a sequence of operator such that: 1) There ezists a set P of functions
which is dense in (L) and such that, for any p € P,

(17) limsup |Up(p,2)| =0 a.e.;
n—00
2) For every f € ¢(L), the estimate
sup |Un(f,2)| < o0
n>1
holds for z in some set of positive measure. Then for every f € @(L),
limsup |Up(f,z)| =0

for almost every z.

Proof. Denote
U*(f,2) := sup |Un(f, )|,
* n>1
U(f z):= lim sup |Un(f, )|.
Conditions (i), (i) imply: a?¢(u) < ¢(au) < ap(u) (0 < « < 1). Applying
this and Jensen’s inequality, it is easy to verify that the sequence U, satisfies
the conditions of Theorem A. On the basis of this theorem we conclude that

there exists A > 0 so that

m{z €T:U(f,z)>a} <m{zeT:U"(f,z)>a)}
A A
< [t i < 2 [ o(1s(a) a,
T T
for a > A and f € p(L). Hence there exists K > 0 such that for all f € (L),

(18) Jwirontae <& [ i@ s+ k.
T T

The proof of (18) is not difficult due to the representation of the left-hand
part of (18) in terms ofu(A) = m{z € T : U(f,z) > A}. Let 8§ > 0 and
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f € ¢(L). According to the density of the set P, there exists po(z) € P such
that

(19) [ 6 1() - @) ds < 1.
T

Using consecutively (17), (18) and (19), we get

0 [U(a)tds = [W0@),2)~Ulon2)lt ds
: < Tjw(a%—m,z))é dz
< x [ #165(z) - pol@)) de + K < 2K,
and thus )

/(U(f,w))% dz < ?g: for any 6 > 0.
T

Let § — oo. We get fT(U(f,m))% dz = 0. Therefore U(f,z) = 0 a.e. inT.

Lemma 4 is proved.

Corollary. Assume that for every f € Llog* Llog* log* log* L we have
sup,>1 |Sn(f,2)| < 00 for z in some set of positive measure. Then the Fourier
series of any f € Llog L og*tlogtlog® L converges a.e. .

To prove this corollary we just apply Lemma 4 for Un(f, 2) = Salf 2)=
f(z) with P being the set of all trigonometric polynomials. Let us note also
that there exists a function ¢, satisfying conditions (i) and (ii), such that
¢(L) = Llog* Llog* log* log™ L.

5. Proof of the theorem

First we assume that f : T — {0} U[16,400) and J(f) < 1/(4C). Let
n € N. Then, according to Lemma 2, there exists a function g(z) = gn(z) =

S %%, akXF,(z) such that

I SN <G
and

(20) ||Mnf - Mugnllc £ ”Mn(f —gn)llc = lf:“"i:*én [|Sm(f — gny)llc < 1.
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It follows from (20) that for all z € T, we have M, f(z) < M,g,(z) + 1.
Therefore

(21) {zeT:M,f(z)> 14} C {z €T : M,g.(z) >13).
According to (21) and Lemma 3,

m{z €T : M, f(z) > 4} <mazeT: M, gn(z) > 13} < 2.

Hence
(22) m{zeT: Mf(z)> 14} = Jim m{z € T: M, f(z) > 14} < 2.

Using (22), the convergence a.e. of Fourier series of bounded functions and
linearity of the set (L) = Llog* Llog*log* log* L, we can prove that for
every f € (L)

lim sup [S,(f,z)| < o0

on a set of positive measure. According to the corollary of Lemma 4, this fact
implies almost everywhere convergence of the Fourier series of functions from
Llog* Llog*log* log* L. The theorem is proved.

Remark. Clearly, the construction proposed here can be applied to im-
prove the well-known Sjélin result on a.e. convergence of multiple Fourier se-
ries, namely, to prove that the condition f € L(log™ L)?log* log* log* L(T%)
is sufficient for such a convergence. We shall publish this result soon in an-
other paper,
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