Return to computing page for the first course APMA0330
Return to computing page for the second course APMA0340
Return to Mathematica tutorial for the first course APMA0330
Return to Mathematica tutorial for the second course APMA0340
Return to Mathematica tutorial for the third course APMA0360
Return to the main page for the first course APMA0330
Return to the main page for the second course APMA0340
Return to the main page for the third course APMA0360
Return to Part VII of the course APMA0340
Introduction to Linear Algebra with Mathematica

Bessel functions of Half-integer order


First, we check that

\begin{equation} \label{EqHalf.1} J_{-1/2} (x) = \left( \frac{2}{\pi x} \right)^{1/2} \cos x . \end{equation}
   
Example 1: We check with Mathematica:
DSolve[x^2 *y''[x] + x*y'[x] + (x/4 - 1/16)*y[x] == 0, y[x], x]
{{y[x] -> (E^(I Sqrt[x]) C[1])/x^(1/4) + (I E^(-I Sqrt[x]) C[2])/x^( 1/4)}}
   ■
End of Example 1
Moreover,
\begin{equation} \label{EqHalf.2} J_{n+1/2} (x) = (-1)^n \sqrt{\frac{2}{\pi}}\, x^{n + 1/2} \left( \frac{\text d}{{\text d}x} \right)^n \,\frac{\sin x}{x} , \qquad n=0,1,2,\ldots . \end{equation}
Thus applying a recurrence formula \( \displaystyle \quad J_{\nu +1} (x) = \frac{2\nu}{x}\, J_{\nu} (x) - J_{\nu -1} (x) \quad \) and using the Lommel polynomials yield
\[ J_{n+1/2} (x) = R_{n,\nu} (x)\, J_{1/2} (x) - R_{n-1, \nu +1} \,J_{-1/2} (x) . \]
So we have
\begin{equation} \label{EqHalf.3} J_{n+1/2} (x) = R_{n,\nu}(x) \left( \frac{2}{\pi x} \right)^{1/2} \sin x - R_{n-1, \nu +1} (x) \left( \frac{2}{\pi x} \right)^{1/2} \sin x . \end{equation}
or each fixed ν, the Lommel polynomials are given by
\begin{equation} \label{EqHalf.4} R_{n,\nu} (x) = \sum_{k=0}^{\left\lfloor n/2 \right\rfloor} \frac{(-1)^k (n-k)!\,\Gamma (\nu +n-k)}{k! \,(n-2k)!\, \Gamma (\nu +k)} \left( \frac{2}{x} \right)^{n-2k} , \end{equation}
where ⌊ ν ⌋ is the floor of number ν and
\[ \Gamma (\nu ) = \int_0^{\infty} t^{\nu -1} e^{-t} \,{\text d}t \] is the gamma function.

Eugen Cornelius Joseph von Lommel (1837 – 1899) was a German physicist. He is notable for the Lommel polynomial, the Lommel function, the Lommel–Weber function, and the Lommel differential equation. He is also notable as the doctoral advisor of the Nobel Prize winner Johannes Stark.

These Lommel polynomials have remarkable properties. Since

\[ J_{-1/2} (x) = \left( \frac{2}{\pi x} \right)^{1/2} \cos x , \qquad J_{1/2} (x) = \left( \frac{2}{\pi x} \right)^{1/2} \sin x , \]
and sin²x + cos²x = 1, we have
\begin{equation} \label{EqHalf.5} J^2_{n+1/2} (x) + J^2_{-n-1/2} (x) = 2 \left( -1 \right)^n \frac{1}{\pi x}\,R_{2n, 1/2-n} (x) . \end{equation}
hat is, we have
\[ J^2_{n+1/2} (x) + J^2_{-n-1/2} (x) = \frac{2}{\pi x} \sum_{k=0}^n \frac{(2x)^{2n-2k} (2n-k)! \, (2n-2k)!}{\left[ (n-k)! \right]^2 k!} . \]
A few special cases are
\begin{align*} J^2_{1/2} (x) + J^2_{-1/2} (x) &= \frac{2}{\pi x} , \\ J^2_{3/2} (x) + J^2_{-3/2} (x) &= \frac{2}{\pi x} \left( 1 + \frac{1}{x^2} \right) , \\ J^2_{5/2} (x) + J^2_{-5/2} (x) &= \frac{2}{\pi x} \left( 1 + \frac{3}{x^2} + \frac{9}{x^4} \right) , \\ J^2_{7/2} (x) + J^2_{-7/2} (x) &= \frac{2}{\pi x} \left( 1 + \frac{6}{x^2} + \frac{45}{x^4} + \frac{225}{x^6} \right) . \end{align*}    
Example 2: We check with Mathematica:
DSolve[x^2 *y''[x] + x*y'[x] + 9*x^4 *y[x] == 0, y[x], x]
{{y[x] -> BesselJ[0, (3 x^2)/2] C[1] + 2 BesselY[0, (3 x^2)/2] C[2]}}
   ■
End of Example 2
   
Example 3: We check with Mathematica:
DSolve[y''[x] - x*y[x] == 0, y[x], x]
{{y[x] -> AiryAi[x] C[1] + AiryBi[x] C[2]}}
   ■
End of Example 3

 

 

  1. Carbajal-Dominguez, A., Bernal, J., Martin-Ruiz, A., Martinez-Niconoff, G., Segovia, J., Half-integer order Bessel beams,
  2. Bayman, B. F., “A generalization of the spherical harmonic gradient formula”, J. Math. Phys. 19 (1978), 2558–2562
  3. Watson, G.N., A Treatise on the Theory of Bessel Functions, Cambridge University Press; 2nd edition (August 1, 1995). ISBN-13 ‏ : ‎ 978-0521483919

 

Return to Mathematica page
Return to the main page (APMA0340)
Return to the Part 1 Matrix Algebra
Return to the Part 2 Linear Systems of Ordinary Differential Equations
Return to the Part 3 Non-linear Systems of Ordinary Differential Equations
Return to the Part 4 Numerical Methods
Return to the Part 5 Fourier Series
Return to the Part 6 Partial Differential Equations
Return to the Part 7 Special Functions