Return to computing page for the first course APMA0330
Return to computing page for the second course APMA0340
Return to computing page for the fourth course APMA0360
Return to Mathematica tutorial for the first course APMA0330
Return to Mathematica tutorial for the second course APMA0340
Return to Mathematica tutorial for the fourth course APMA0360
Return to the main page for the course APMA0330
Return to the main page for the course APMA0340
Return to the main page for the course APMA0360
Introduction to Linear Algebra with Mathematica
Glossary
Preface
Fourier and Wavelet Analysis, Authors: George Bachman, Lawrence Narici, Edward Beckenstein
The Hankel transform of order ν of a function f(r) is given by
For Hankel transformations, we have
\[
F_{\nu} (k) = \int_0^{\infty} f(r)\,J_{\nu} (kr)\,r\,{\text d}r ,
\]
where Jν is the Bessel function of the first kind of order
ν with ν ≥ −1/2. The inverse Hankel transform of
Fν(k) is defined as
\[
f(r) = \int_0^{\infty} F_{\nu} (k)\,J_{\nu} (kr)\,k\,{\text d}k .
\]
\[
\int_0^{\infty} r\left( \frac{{\text d}^2 f}{{\text d} r^2} + \frac{1}{r} \,
\frac{{\text d} f}{{\text d} r} - \frac{\nu^2}{r^2} \, f \right) J_{\nu} (rk)\,{\text d}r = - k^2 F_{\nu} (k) = - k^2 \int_0^{\infty} f(r)\,J_{\nu} (kr)\,r\,{\text d}r .
\]
■