The following books are recommended:
  1. Axelsson, O., Iterative Solution Methods, Cambridge University Press, 2012, doi: https://doi.org/10.1017/CBO9780511624100
  2. Chatelin, F., Eigenvalues of Matrices, Society for Industrial and Applied Mathematics; 2nd edition (August 26, 2013).
  3. Dimmel, J.W., Applied Numerical Linear Algebra, SIAM; 1st edition (August 1, 1997).
  4. Fadeev, D.K., Fadeeva, V.N., Computational Methods of Linear Algebra, Freeman and Company, San Fransisco, 1963.
  5. Forsythe, G.E., Moller, C.B., Computer Solution of Linear Algebraic Systems, โ€Ž Prentice Hall (June 1, 1967).
  6. Fox, L., An Introduction to Numerical Analysis, Dover, New York, 1965.
  7. Golub, G.H., Van Loan, C.F., Matrix Computations, Johns Hopkins University Press; fourth edition (February 15, 2013).
  8. Greenbaum, A., Iterative Methods for Solving Linear Systems, Society for Industrial and Applied Mathematics; 1st edition (January 1, 1987).
  9. Higham, N.J., Accuracy and Stability of Numerical Algorithms, โ€Ž SIAM: Society for Industrial and Applied Mathematics; 2nd edition (August 1, 2002).
  10. Householder, A.S., The Theory of Matrices in Numerical Analysis, Dover, New York, 1975.
  11. Ipsen, I., Numerical Matrix Analysis: Linear Systems and Least Squares, Society for Industrial and Applied Mathematics (July 23, 2009).
  12. Meurant, G., Lanczos and Conjugate Gradient Algorithms: rom Theory to Finite Precision Computations, Society for Industrial and Applied Mathematics (August 1, 2006).
  13. Saad, Y., Iterative Methods for Sparse Linear Systems, Pws Pub Co (January 1, 1996).
  14. Stewart, G.W., Introduction to Matrix Computations, Academic Press; 1st edition (June 11, 1973).
  15. Stewart, G.W., Matrix Algorithms: Basic Decompositions, SIAM: Society for Industrial and Applied Mathematics; 1st edition (August 1, 1998).
  16. Stewart, G.W., Sun, J-G., Matrix Perturbation Theory, Academic Press; 1st edition (July 12, 1990).
  17. Trefethen, L.N., Bau, D., Numerical Linear Algebra, SIAM: Society for Industrial and Applied Mathematics; 1st edition (June 1, 1997).
  18. Varga, R.S., Matrix Iterative Analysis, Englewood Cliffs, NJ, Prentice-Hall Inc., 1962.
  19. Watkins, D., Fundamentals of Matrix Computations, Wiley; 3rd edition (July 6, 2010).
  20. Watkins, D., The Matrix Eigenvalue Problem: GR and Krylo11 Subspace Methods, Philadelphia : Society for Industrial and Applied Mathematics, 2007. DOI:10.1137/1.9780898717808
  21. Wilkinson, J.H., The Algebraic Eigenvalue Problem, โ€Ž Clarendon Press; Revised ed. edition (April 21, 1988).
TitleAuthorLink
Example TitleExample AuthorExample Link