Return to computing page for the first course APMA0330
Return to computing page for the second course APMA0340
Return to computing page for the fourth course APMA0360
Return to Mathematica tutorial for the first course APMA0330
Return to Mathematica tutorial for the second course APMA0340
Return to Mathematica tutorial for the fourth course APMA0360
Return to the main page for the course APMA0330
Return to the main page for the course APMA0340
Return to the main page for the course APMA0360
Introduction to Linear Algebra with Mathematica

The Fokas Method or Unified Transform Method


We consider one-dimensional initial boundary value problem (where α > 0, γ ≥ 0).
\begin{align*} &\mbox{Heat conduction equation:} \qquad &u_t &= \alpha\,u_{xx} - \gamma\,u(x,t) + f(x,t)\qquad\mbox{for } 0 < x < \infty \mbox{ and } t > 0, \\ &\mbox{Boundary condition:} \qquad &u(0,t) &= g(t) , \qquad t > 0, \\ &\mbox{Initial condition:} \qquad &u(x,0) &= u_0 (x) , \qquad 0 < x < \infty . \\ &\mbox{Corner condition:} \qquad &u(x,t) &\sim (0, 0) , \qquad \mbox{ as } (x,t) \to (0,0), \\ &\mbox{Regularity condition:} \qquad & \lim_{x,t \to +\infty}\,|u(x,t)| &= 0 , \quad\qquad u, u_t , u_{xx} \in 𝔏²(R), \\ \end{align*}