We consider the initial boundary value problem for the heat equation subject to the Dirichlet boundary conditions on half line:
\begin{align} \label{eqHeat.1}
u_t &= \alpha u_{xx} - \gamma\, u + f(x,t) , & x > 0, \quad 0 < t < \infty , \\ \label{eqHeat.2}
u(0,t) &= g(t) , & 0< t < \infty , \\ \label{eqHeat.3}
u(x,0) &= u_0(x) , & x> 0 ,
\end{align}
where subscripts indicate partial derivatives. For example,
\( \displaystyle \quad u_t = \frac{\partial u}{\partial t} . \quad \)
The heat equation contains (phisical) real parameters, so α > 0 and γ ≥ 0.
All functions in the heat equation \eqref{eqHeat.1}, boundary condition \eqref{eqHeat.2}, and the initial condition \eqref{eqHeat.3} are assumed to be in the
Hilbert space ℌ². Also all derivatives (
u t ,
u xx ) are assumed to be continuous in the open domain 0 <
x < ∞, 0 <
t < ∞
To solve the given initial boundary value problem, we use sine Fourier transformation. So we multiply the differential equation \eqref{eqHeat.1} and the initial condition \eqref{eqHeat.3} by sine (kx ) and integrate with respect to x from 0 to ∞. This results in the equation
\[
\frac{{\text d} u^s}{{\text d}t} = \alpha \int_0^{\infty} \frac{\partial^2 u}{\partial x^2} \,\sin (kx) \,{\text d}x - \gamma \,u^s (k,t) + f^s (k,t) ,
\]
and the initial condition
\begin{equation} \label{eqHeat.4}
u^{s} (k, +0) = u^s_0 (k) = \int_0^{\infty} u_0 (x)\,\sin (kx)\, {\text d} x
\end{equation}
for the sine Fourier transform of the unknown function
\[
u^{s} (k, t) = ℱ^s_{x \to k} \left[ u(x,t) \right] = \int_0^{\infty} u(x,t)\,\sin (kx)\,{\text d} x .
\]
The sine Fourier transforms of the given function in Eq. \eqref{eqHeat.1} is
\[
f^{s} (k, t) = ℱ^s_{x \to k} \left[ f(x,t) \right] = \int_0^{\infty} f(x,t)\,\sin (kx)\,{\text d} x .
\]
Since the differential equation contains second derivative under integration, we integrate by parts twice and obtain
\begin{align*}
\int_0^{\infty} \frac{\partial^2 u}{\partial x^2} \,\sin (kx)\,{\text d}x &=
\left. \frac{\partial u}{\partial x}\,\sin (kx) \right\vert_{x=0}^{x\to +\infty} - \int_0^{\infty} \frac{\partial u}{\partial x} \,k\, \cos (kx)\,{\text d}x
\\
&= -u(x,t)\,k\,\cos (kx) \Large\vert_{x=0}^{x\to +\infty} - \int_0^{\infty} u(x,t)\, k^2 \sin (kx)\,{\text d}x
\\
&= k\, u(+0,t) - k^2 u^s (k,t) .
\end{align*}
This leads to the the ordinary differential equation for the sine Fourier transform of the unknown function:
\begin{equation} \label{eqHeat.5}
\frac{{\text d} u^s}{{\text d}t} = - \left( \alpha\,k^2 + \gamma \right) u^s (k,t) + k\alpha\, g (t) + f^s (k, t) .
\end{equation}
We ask
Mathematica to solve the initial value problem \eqref{eqHeat.5}, \eqref{eqHeat.4}.
DSolve[{u'[t] + (a*k^2 + gamma)*u[t] == F[t], u[0] == u0}, u[t], t]
{{u[t] ->
E^(-gamma t -
a k^2 t) (u0 +
Inactive[Integrate][
E^(gamma K[1] + a k^2 K[1]) F[K[1]], {K[1], 0, t}])}}
\[
u^s (k, t) = e^{- (\alpha k^2 + \gamma )t} \left[ u_0^s (k) + \int_0^t e^{ (\alpha k^2 + \gamma ) \tau} \left( k\alpha\, g (\tau ) + f^s (k, \tau ) \right) {\text d} \tau \right] .
\]
Application of the inverse sine Fourier transform to the latter gives the required solution
\[
u(x,t) = \frac{2}{\pi} \int_0^{\infty} u^s (k, t)\,\sin (kx)\,{\text d} k = I_{u0} + I_g + I_f ,
\]
where
\begin{align*}
I_{u0} &= \frac{2}{\pi} \int_0^{\infty} \sin (kx)\,e^{- (\alpha k^2 + \gamma )t} \,{\text d} k \,\int_0^{\infty} {\text d}\xi u_0 (\xi )\,\sin (k\xi ) ,
\\
&= \frac{1}{2\sqrt{\pi\alpha t}}\, e^{-\gamma t} \,\int_0^{+\infty} {\text d}\xi u_0 (\xi ) \left[ e^{- (x-\xi )^2 /(4\alpha t)} - e^{- (x+\xi )^2 /(4\alpha t)} \right]
\\
I_{g} &= \frac{2}{\pi} \int_0^{\infty} \sin (kx)\,{\text d} k \,k\alpha \, \int_0^t e^{-\gamma (t- \tau )} \,e^{- \alpha k^2 (t-\tau )} \,g(\tau ) \,{\text d} \tau
\\
&= \frac{x}{2\sqrt{\pi\alpha} } \,\int_0^{t} e^{-\gamma (t- \tau )} \, e^{-x^2 /(4\alpha (t-\tau ))} \left( t- \tau \right)^{-3/2} g(\tau )\,{\text d}\tau ,
\\
I_{f} &= \frac{2}{\pi} \int_0^{+\infty} \sin (kx)\,e^{- (\alpha k^2 + \gamma )(t- \tau )} \,{\text d} k \,\int_0^t f^s (k, \tau )\,{\text d}\tau
\\
&= \frac{2}{\pi} \int_0^{\infty} \sin (kx)\,e^{- (\alpha k^2 + \gamma )(t- \tau )} \,{\text d} k \,\int_0^t {\text d}\tau \int_0^{\infty} f(\xi , \tau )\,\sin (k\xi )\,{\text d}\xi
\\
&= \frac{1}{2\sqrt{\pi\alpha}} \int_0^{\infty} f(\xi, \tau ) \,{\text d}\xi \int_0^t {\text d}\tau \left[ e^{(x-\xi )^2 /(4\alpha (t-\tau ))} - e^{(x+\xi )^2 /(4\alpha (t-\tau ))} \right] e^{-\gamma (t-\tau )} .
\end{align*}
Integrate[Sin[k*x]*Sin[k*xi]*Exp[-a*k^2], {k, 0, Infinity}]
ConditionalExpression[((E^(-((x - xi)^2/(4 a))) -
E^(-((x + xi)^2/(4 a)))) Sqrt[\[Pi]])/(4 Sqrt[a]), Re[a] > 0]
Integrate[Exp[-a*k^2]*k*Sin[k*x], {k, 0, Infinity}]
ConditionalExpression[(E^(-(x^2/(4 a))) Sqrt[\[Pi]] x)/(4 a^(3/2)),
Re[a] > 0]
Integrate[Exp[-a*k^2]*Sin[k*x]*Sin[k*xi], {k, 0, Infinity}]
ConditionalExpression[((E^(-((x - xi)^2/(4 a))) -
E^(-((x + xi)^2/(4 a)))) Sqrt[\[Pi]])/(4 Sqrt[a]), Re[a] > 0]
We integrate by parts each integral:
\begin{align*}
I_{u0} &= \frac{2}{\pi} \int_0^{\infty} \sin (kx)\,e^{- (\alpha k^2 + \gamma )t} \,{\text d} k \,\int_0^{\infty} {\text d}\xi u_0 (\xi )\,\frac{\text d}{{\text d}\xi} \left( -\frac{\cos (k\xi )}{k} \right)
\\
&= \frac{2}{\pi} \int_0^{\infty} \sin (kx)\,e^{- (\alpha k^2 + \gamma )t} \,{\text d} k \left[ -\left. u_0 (\xi )\, \frac{\cos (k\xi )}{k} \right\vert_{\xi =0}^{+\infty} + \int_0^{+\infty} \frac{\cos (k\xi )}{k} \, \frac{{\text d} u_0 }{{\text d}\xi}\,{\text d}\xi \right]
\\
&= \frac{2}{\pi}\, u_0 (+0) \,\int_0^{\infty} \frac{\sin (kx)}{k}\,e^{- (\alpha k^2 + \gamma )t} \,{\text d} k + \frac{2}{\pi} \int_0^{\infty} \sin (kx)\,e^{- (\alpha k^2 + \gamma )t} \,{\text d} k \,\int_0^{+\infty} \frac{\cos (k\xi )}{k} \, \frac{{\text d} u_0 }{{\text d}\xi}\,{\text d}\xi
\\
&= u_0 (+0)\,e^{-\gamma t}\,\mbox{erf} \left( \frac{x}{2\sqrt{\alpha t}} \right) + \frac{1}{2} \, \int_0^{+\infty} {\text d}\xi \left[ \mbox{erf} \left( \frac{x - \xi}{2\sqrt{\alpha t}} \right) + \mbox{erf} \left( \frac{x + \xi}{2\sqrt{\alpha t}} \right) \right] \frac{{\text d} u_0 }{{\text d}\xi} ,
\end{align*}
Integrate[Sin[k*x]*Exp[-a*k^2]/k, {k, 0, Infinity}]
ConditionalExpression[1/2 \[Pi] Erf[x/(2 Sqrt[a])], Re[a] > 0]
Integrate[Sin[k*x]*Cos[k*xi]*Exp[-a*k^2]/k, {k, 0, Infinity}]
ConditionalExpression[
1/4 \[Pi] (Erf[(x - xi)/(2 Sqrt[a])] + Erf[(x + xi)/(2 Sqrt[a])]),
Re[a] > 0]
where
\[
\mbox{erf} (t) = \frac{2}{\sqrt{\pi}}\,\int_0^t e^{-\eta^2} \,{\text d}\eta
\]
is the
error function . Since
x ²/
t has no limit as
x,t approach zero, the integral
I u0 (
x ,
t ) has not limit value at the origin unless
u 0(0) = 0.
Next we make a substitution in integral I g
\[
\tau = t - \frac{x^2}{4\alpha T} \qquad \Longrightarrow \qquad {\text d}\tau =\frac{x^2}{4\alpha T^2} \,{\text d}T .
\]
This yields
\begin{align*}
I_{g} (x, t) &= \frac{x}{2\sqrt{\pi\alpha} } \,\int_0^{t} e^{-\gamma (t- \tau )} \, e^{-x^2 /(4\alpha (t-\tau ))} \left( t- \tau \right)^{-3/2} g(\tau )\,{\text d}\tau
\\
&= \frac{x}{2\sqrt{\pi\alpha}} \,\int_{x^2/(4\alpha t)}^{+\infty} e^{-\gamma x^2 /(4\alpha T)} \, e^{-T} \left( \frac{4 \alpha T}{x^2} \right)^{3/2} \,\frac{x^2}{4\alpha T^2} \,g \left( t - \frac{x^2}{4\alpha T} \right) {\text d}T
\\
&= \frac{1}{\sqrt{\pi}} \, \int_{x^2/(4\alpha t)}^{+\infty} e^{-\gamma x^2 /(4\alpha T)} \, e^{-T} \, g \left( t - \frac{x^2}{4\alpha T} \right) \frac{{\text d}T}{\sqrt{T}} .
\end{align*}
Upon adding and subtructing g (t ), we transfer the integral to the following form:
\[
I_g (x,t) = \frac{g(t)}{\sqrt{\pi}} \, \int_{x^2/(4\alpha t)}^{+\infty} e^{-\gamma x^2 /(4\alpha T)} \, e^{-T} \,\frac{{\text d}T}{\sqrt{T}} + \frac{1}{\sqrt{\pi}} \, \int_{x^2/(4\alpha t)}^{+\infty} e^{-\gamma x^2 /(4\alpha T)} \, e^{-T} \left[ g \left( t - \frac{x^2}{4\alpha T} \right) - g(t) \right] \frac{{\text d}T}{\sqrt{T}} .
\]
Using Mathematica , we simplify tis expression
Integrate[
Exp[-gamma*x^2 /(4*a*t)]*Exp[-T]/Sqrt[T], {T, x^2 /(4*a*t),
Infinity}]/Sqrt[Pi]
E^(-((gamma x^2)/(4 a t))) Erfc[1/2 Sqrt[x^2/(a t)]]
\[
I_g (x,t) = g(t)\, e^{- \gamma \,x^2 /(4\alpha t)} \,\mbox{erf}\left( \frac{x}{2\sqrt{\alpha t}} \right) + \frac{1}{\sqrt{\pi}} \, \int_{x^2/(4\alpha t)}^{+\infty} e^{-\gamma x^2 /(4\alpha T)} \, e^{-T} \left[ g \left( t - \frac{x^2}{4\alpha T} \right) - g(t) \right] \frac{{\text d}T}{\sqrt{T}} .
\]
In integrals I u0 and I f we make substitution span class="math">\( \displaystyle \quad \xi \pm x = X\.\sqrt{4\alpha t} ; \quad \) this yields
\begin{align*}
I_{u0} (x,t) &= \frac{1}{2\sqrt{\pi\alpha t}}\, e^{-\gamma t} \,\int_0^{+\infty} {\text d}\xi \,u_0 (\xi ) \left[ e^{- (x-\xi )^2 /(4\alpha t)} - e^{- (x+\xi )^2 /(4\alpha t)} \right]
\\
&= e^{-\gamma t} \,\int_{-x/\sqrt{4\alpha t}}^{+\infty} \, e^{-X} \, u_0 \left( x + X\,\sqrt{4\alpha t} \right) {\text d}X - e^{-\gamma t} \,\int_{x/\sqrt{4\alpha t}}^{+\infty} \, e^{-X} \, u_0 \left( -x + X\,\sqrt{4\alpha t} \right) {\text d}X ;
\end{align*}
and
\begin{align*}
I_{f} (x,t) &=
\frac{1}{2\sqrt{\pi\alpha}} \int_0^{\infty} f(\xi, \tau ) \,{\text d}\xi \int_{-x/\sqrt{4\alpha t}}^t {\text d}\tau \left[ e^{(x-\xi )^2 /(4\alpha (t-\tau ))} - e^{(x+\xi )^2 /(4\alpha (t-\tau ))} \right] e^{-\gamma (t-\tau )} .
\\
&= \int_0^t {\text d}\tau \,e^{-\gamma (t-\tau )} \left[ \int_{-x/\sqrt{4\alpha t}}^{\infty} {\text d}X \, f \left( x + X\,\sqrt{4\alpha t} \right) e^{-X} -
\int_{x/\sqrt{4\alpha t}}^{\infty} {\text d}X \, f \left( -x + X\,\sqrt{4\alpha t} \right) e^{-X} e^{-X} \right] .
\end{align*}
We calculate upon evaluation integrals with pecewise input constant functions.
Let us start with u ₀.
\[
u_0 (x) = \begin{cases}
1 , & \quad\mbox{if} \quad 0 \le x \le 1 , \\
0, & \quad \mbox{otherwise} .
\end{cases}
\]
Integrate[
Exp[-(x - xi)^2 /4/t] - Exp[-(x + xi)^2 /4/t], {xi, 0, 1}]/(2*
Sqrt[Pi*t])
1/2 (-Erf[(-1 + x)/(2 Sqrt[t])] + 2 Erf[x/(2 Sqrt[t])] -
Erf[(1 + x)/(2 Sqrt[t])])
\[
I_0 (x,t) = \mbox{erf} \left( \frac{x}{2\sqrt{t}} \right) - \frac{1}{2}\,\mbox{erf} \left( \frac{x-1}{2\sqrt{t}} \right) - \frac{1}{2}\,\mbox{erf} \left( \frac{1+x}{2 \sqrt{t}} \right) ,
\]
wjere erf is the error function. We plot the function
Plot3D[1/
2 (-Erf[(-1 + x)/(2 Sqrt[t])] + 2 Erf[x/(2 Sqrt[t])] -
Erf[(1 + x)/(2 Sqrt[t])]), {x, 0, 5}, {t, 0, 1},
PlotStyle -> Orange, Mesh -> None, PlotRange -> {0, 1}]
Function u ₀.
As it is seen from the graph, the corresponding integral I 0 (x, t ) is unbounded at x = 0. To check the problem, we consider another initial function that vanishes at the origin:
\[
u_0 (x) = \begin{cases}
1 , & \quad\mbox{if} \quad 0.5 \le x \le 1.5 , \\
0, & \quad \mbox{otherwise} .
\end{cases}
\]
Integrate[
Exp[-(x - xi)^2 /4/t] - Exp[-(x + xi)^2 /4/t], {xi, 0, 1}]/(2*
Sqrt[Pi*t])
1/2 (-Erf[(-3 + 2 x)/(4 Sqrt[t])] + Erf[(-1 + 2 x)/(4 Sqrt[t])] +
Erf[(1 + 2 x)/(4 Sqrt[t])] - Erf[(3 + 2 x)/(4 Sqrt[t])])
\[
I_0 (x,t) = \frac{1}{2}\,\mbox{erf} \left( \frac{2x-1}{4\sqrt{t}} \right) - \frac{1}{2}\,\mbox{erf} \left( \frac{2x-3}{4\sqrt{t}} \right) +
\frac{1}{2}\,\mbox{erf} \left( \frac{2x+1}{4\sqrt{t}} \right)
- \frac{1}{2}\,\mbox{erf} \left( \frac{2x+3}{4 \sqrt{t}} \right) ,
\]
wjere erf is the error function. We plot the function
Plot3D[1/
2 (-Erf[(-3 + 2 x)/(4 Sqrt[t])] + Erf[(-1 + 2 x)/(4 Sqrt[t])] +
Erf[(1 + 2 x)/(4 Sqrt[t])] - Erf[(3 + 2 x)/(4 Sqrt[t])]),
{x, 0, 5}, {t, 0, 1},
PlotStyle -> Orange, Mesh -> None, PlotRange -> {0, 1}]
Function u ₀ vanishes at the origin
Now we consider function u g , where g is again fiecewise constant.
(x/2/Sqrt[Pi])*
Integrate[
Exp[-(t - tau)]*Exp[-x^2/4/(t - tau)]/(t - tau)^(3/2), {tau, 0,
Max[1, t]}]
1/(2 Sqrt[x^2])E^-Sqrt[
x^2] x (-Erfc[-((-2 t + Sqrt[x^2])/(2 Sqrt[t]))] +
Erfc[(2 t - Sqrt[x^2] - 2 Max[1, t])/(2 Sqrt[t - Max[1, t]])] +
E^(2 Sqrt[
x^2]) (Erfc[(2 t + Sqrt[x^2])/(2 Sqrt[t])] -
Erfc[(2 t + Sqrt[x^2] - 2 Max[1, t])/(2 Sqrt[t - Max[1, t]])])
Since this expression is cumbersome, we use numerical integration. Note that the integrand has a weak singularity as 1/√X as X → 0.
Plot3D[(x/2/Sqrt[Pi])*
NIntegrate[
Exp[-(t - tau)]*Exp[-x^2/4/(t - tau)]/(t - tau)^(3/2), {tau, 0,
Min[1, t]}], {x, 0, 5}, {t, 0, 3}, PlotStyle -> Purple,
Mesh -> None, PlotRange -> {0, 2}]
Function u g .
Finally, we plot function u f for
\[
f (x,t) = \begin{cases}
f(t) , & \quad \mbox{if} \quad 0 \le x \le 1 , \\
0 , & \quad \mbox{otherwise}.
\end{cases}
\]
We substitute the intermedian integral (with α = 1 for simplicity)
(1/2/Sqrt[Pi])*
Integrate[
Exp[(x - xi)^2 /4/(t - tau)] - Exp[(x + xi)^2 /4/(t - tau)] , {xi,
0, 1}]
-1/2 Sqrt[
t - tau] (Erfi[(-1 + x)/(2 Sqrt[t - tau])] -
2 Erfi[x/(2 Sqrt[t - tau])] + Erfi[(1 + x)/(2 Sqrt[t - tau])])
into the general formula,
\[
I_f (x, t) = \int_0^t f(\tau )\,{\text d}\tau \left\{ \frac{1}{\sqrt{t - \tau}} \left[ \mbox{erf} \left( \frac{x}{2\sqrt{t - \tau}} \right) - \frac{1}{2} \,\mbox{erf} \left( \frac{x-1}{2\sqrt{t - \tau}} \right) - \frac{1}{2} \,\mbox{erf} \left( \frac{x+1}{2\sqrt{t - \tau}} \right) \right]
\right\} .
\tag{f.1}
\]
For numerical integration, we intrduce ε = 0.1 amd integrate with respect to τ from 0 to t − ε because the integrand approach 0 exponentially near τ = t ; so
\[
I_f (x, t) = \int_0^{t-\epsilon} f(\tau )\,{\text d}\tau \left\{ \frac{1}{\sqrt{t - \tau}} \left[ \mbox{erf} \left( \frac{x}{2\sqrt{t - \tau}} \right) - \frac{1}{2} \,\mbox{erf} \left( \frac{x-1}{2\sqrt{t - \tau}} \right) - \frac{1}{2} \,\mbox{erf} \left( \frac{x+1}{2\sqrt{t - \tau}} \right) \right]
\right\} .
\tag{f.2}
\]
Upon choosing f (t ) = χ[0, 2] (t ), we obtain
Plot3D[ NIntegrate[ -(1/2) Sqrt[
t - tau] (Erfi[(-1 + x)/(2 Sqrt[t - tau])] -
2 Erfi[x/(2 Sqrt[t - tau])] +
Erfi[(1 + x)/(2 Sqrt[t - tau])]), {tau, 0, Min[2, t - 0.1]}], {x,
0, 5}, {t, 0.1, 3}, PlotStyle -> Brown, Mesh -> None,
PlotRange -> {0, 1}]
Function u f .
References
Boyd, J.P. and Flyer, N., Compatibility conditions for time-dependent partial differential equations and the rate of convergence of Chebyshev and Fourier spectral methods, Computer Methods in Applied Mechanics and Engineering , 1999, Volume 175, Issues 3–4, Pages 281--309. https://doi.org/10.1016/S0045-7825(98)00358-2
Chatziafratis, A., Boundary behaviour of the solution of the heat equation on the half line via the Fokas unified transform method, 2024,
https://doi.org/10.48550/arXiv.2401.08331
Chatziafratis, A., Fokas, A., Aifantis, E.C., Variations of heat equation on the half-line via the Fokas method, 2024,
First published: 08 September 2024
https://doi.org/10.1002/mma.10303
Chatziafratis, A., Mantzavinos, D., Boundary behavior for the heat equation on the half-line, 2022, https://doi.org/10.1002/mma.8245
Return to Mathematica page
Return to the main page (APMA0340)
Return to the Part 1 Basic Concepts
Return to the Part 2 Fourier Series
Return to the Part 3 Integral Transformations
Return to the Part 4 Parabolic PDEs
Return to the Part 5 Hyperbolic PDEs
Return to the Part 6 Elliptic PDEs
Return to the Part 6P Potential Theory
Return to the Part 7 Numerical Methods