Maple has a dedicated command for Horner's rule:
convert(x^2 - x - 6, horner, x)
\[ -6 + (-1 + x)*x \]

An example from https://ece.uwaterloo.ca/~dwharder/NumericalAnalysis/05Interpolation/horner/
xpts := [3.5, 4.7, 5.1,  6.9, 8.3];
coefflist := [5.3, 3.2, 2.1, -1.8, 1.7];
s := xpts[-1];
x := 5.5235423;
for i from -2 to -nops( xpts ) by -1 do
    s := s*(x - xpts[i]) + coefflist[i];
end do:
xpts := [3.5, 4.7, 5.1, 6.9, 8.3] coefflist := [5.3, 3.2, 2.1, -1.8, 1.7] s := 8.3 x := 5.5235423 s := -13.22459891 s := -3.501177039 s := 0.316632609 s := 5.940719478

 

  1. Bradie, B.A., Friendly Introduction to Numerical Analysis, Pearson Education,2007
  2. Burden, R.L. and Faires, J.D., Numerical Analysis, Cengage Learning, 10 edition, 2015.
  3. Chapra, S.C. and Canale, R.P., Numerical Methods for Engineers, 6th edition, McGraw Hill,2009.
  4. Gerald C.F. and Wheatley, P.O., Applied Numerical Analysis, Pearson Education, 7th edition, 2003.
  5. Hauser, John R., Numerical Methods for Nonlinear Engineering Models, ISBN 978-1-4020-9920-5, 2009, Springer Netherlands, doi: 10.1007/978-1-4020-9920-5
  6. Numerical Analysis for Engineering
  7. Ostrowski, A.M., Solutions of Equations and Systems of Equations, Academic Press, New York, 1960.
  8. Petković, M.S., Neta, B., Petković, L.D., Džunić, J., Multipoint Methods for Solving Nonlinear Equations, Elsevier, Amsterdam, 2013.
  9. Traub, J.F., Iterative Methods for Solution of Equations, Prentice-Hall, Englewood Cliffs, NJ, 1964.
  10. Wu, X., Wu, H.W., On a class of quadratic convergence iteration formulae without derivatives, Applied Mathematics & Computations, 2000, Vol. 10, Issue 7, pp. 381--389.