The
Sumudu transform was proposed by G.K. Watugala in 1993:
\[
S\left[ f(t) \right] (\nu ) = \frac{1}{\nu} \int_0^{\infty} f(t)\,e^{-t/\nu}
\,{\text d}t .
\]
A sufficient condition for the existence of the Sumudu transform of a
function
f is its exponential order:
\( \left\vert f(t) \right\vert \le M\,e^{k\,t} , \)
for some positive constants
M and
k. The Sumudu transformation
is related to the Laplace transform via formula:
\[
S\left[ f(t) \right] (\nu ) = \frac{1}{\nu}\,{\cal L} \left[ f(t) \right]
\left( \frac{1}{\nu} \right) = \int_0^{\infty} f(t\nu )\,e^{-t}
\,{\text d}t,
\]
and to Elzaki transform
\[
S\left[ f(t) \right] (\nu ) = \nu^2 E\left[ f(t) \right] (\nu ) ,
\]
where the
Elzaki transformation is
\[
E\left[ f(t) \right] (\nu ) = \nu\,\int_0^{\infty} f(t)\,e^{-t/\nu}
\,{\text d}t = \nu^2 \int_0^{\infty} f(t\nu )\,e^{-t}
\,{\text d}t .
\]
The inverse Elzaki transform:
\[
E^{-1} \left[ F(\nu ) \right] (t ) = \frac{1}{2\pi{\bf j}}\,\int_{a-{\bf j}\infty}^{a+{\bf j}\infty} F\left( \frac{1}{\nu} \right)\,e^{t\nu} \,\nu
\,{\text d}\nu = \sum \,\mbox{residues of } \left[ F\left( \frac{1}{\nu} \right)\,e^{t\nu} \,\nu \right] .
\]
The inverse Sumudu transform:
\[
S^{-1} \left[ F(\nu ) \right] (t ) = \frac{1}{2\pi{\bf j}}\,\int_{a-{\bf j}\infty}^{a+{\bf j}\infty}
\,{\text d}t .
\]
The ELzaki and Laplace transforms exhibit a duality
relation expressed as follows
\[
E \left[ f(t) \right] (\nu ) = \nu\,{\cal L}\left[ f(t) \right]
\left( \frac{1}{\nu} \right) \qquad\mbox{and} \qquad
{\cal L}\left[ f(t) \right] \left( \lambda \right) = \lambda \,
E \left[ f(t) \right] \left( \frac{1}{\lambda} \right) .
\]
The main properties of these transformations are
-
Convolution property:
\begin{align*}
S \left[ f(t) * g(t) \right] (\nu ) &= \nu\,S \left[ f(t) \right] (\nu ) \,
\nu\,S \left[ g(t) \right] (\nu ) = \nu^2 S \left[ f(t) \right]
S \left[ g(t) \right] ;
\\
E \left[ f(t) * g(t) \right] (\nu ) &= \frac{1}{\nu}\,E \left[ f(t) \right] E \left[ g(t) \right]
\end{align*}
where \( (f*g)(t) = \int_0^t f(\tau )\,g(t-\tau )\,{\text d}\tau = (g*f)(t) \) is the convolution of two functions.
-
Differentiation property:
\begin{align*}
S \left[ f' (t) \right] (\nu ) &= \frac{1}{\nu}\,S \left[ f (t) \right] (\nu )
- \frac{1}{\nu}\,f(+0) ,
\\
S \left[ f'' (t) \right] (\nu ) &= \frac{1}{\nu^2}\,S \left[ f (t) \right] (\nu )
- \frac{1}{\nu^2}\,f(+0) - \frac{1}{\nu}\,f'(+0) ,
\\
E \left[ f' (t) \right] (\nu ) &= \frac{1}{\nu} \,E \left[ f (t) \right]
(\nu ) - \nu\,f(+0) ,
\\
E \left[ f'' (t) \right] (\nu ) &= \frac{1}{\nu^2} \,E \left[ f (t) \right]
(\nu ) - \nu\,f'(+0) -f(+0) ,
\\
S \left[ t\,f' (t) \right] (\nu ) &=
\\
S \left[ t^2 f' (t) \right] (\nu ) &=
\\
E \left[ t\,f' (t) \right] (\nu ) &= \nu^2 \frac{\text d}{{\text d}\nu}
\left[ \frac{1}{\nu}\, E \left[ f (t) \right] (\nu ) -\nu\,f(0) \right] -
E \left[ f (t) \right] (\nu ) + \nu^2 f(0) ,
\\
E \left[ t^2 f' (t) \right] (\nu ) &= \nu^4 \frac{{\text d}^2}{{\text d}\nu^2}
\left[ \frac{1}{\nu}\, E \left[ f (t) \right] (\nu ) - \nu\,f(0) \right] ,
\\
S \left[ t\,f'' (t) \right] (\nu ) &=
\\
S \left[ t^2 f'' (t) \right] (\nu ) &=
\\
E \left[ t\,f'' (t) \right] (\nu ) &= \nu^2 \frac{\text d}{{\text d}\nu}
\left[ \frac{1}{\nu^2}\, E \left[ f (t) \right] (\nu ) -\nu\,f'(0) - f(0) \right] -
\frac{1}{\nu}\,E \left[ f (t) \right] (\nu ) + \nu\, f(0) + \nu^2 f' (0) ,
\\
E \left[ t^2 f'' (t) \right] (\nu ) &= \nu^4 \frac{{\text d}^2}{{\text d}\nu^2}
\left[ \frac{1}{\nu^2}\, E \left[ f (t) \right] (\nu ) - f(0) - \nu\,f' (0) \right] .
\end{align*}
Example:
The following formulas follow from the corresponding Laplace transformations:
\begin{align*}
S \left[ H(t) \right] (\nu ) &= 1,
\\
E \left[ H(t-a) \right] (\nu ) &= \nu^2 e^{-a/\nu} ,
\\
S \left[ \delta (t) \right] (\nu ) &= \frac{1}{\nu} ,
\\
E \left[ \delta (t-a) \right] (\nu ) &= \nu\, e^{-a/\nu} ,
\\
S \left[ \sin t\,H(t) \right] (\nu ) &= \frac{\nu}{1 + \nu^2} ,
\\
E \left[ \sin (at)\,H(t) \right] (\nu ) &= \frac{a\,\nu^3}{1+ a^2 \nu^2} ,
\\
S \left[ \cos t\,H(t) \right] (\nu ) &=
\\
E \left[ \cos (at)\,H(t) \right] (\nu ) &= \frac{\nu^2}{1+ a^2 \nu^2} ,
\\
S \left[ \sinh t\,H(t) \right] (\nu ) &= \frac{\nu}{1 - \nu^2} ,
\\
E \left[ \sinh (at)\,H(t) \right] (\nu ) &= \frac{a\,\nu^3}{1- a^2 \nu^2} ,
\\
S \left[ \cos t\,H(t) \right] (\nu ) &=
\\
E \left[ \cosh (at)\,H(t) \right] (\nu ) &= \frac{\nu^2}{1- a^2 \nu^2} ,
\\
S \left[ t^n \,H(t) \right] (\nu ) &=
\\
E \left[ t^n \,H(t) \right] (\nu ) &= n! \nu^{n+2} ,
\\
S \left[ J_0 (at) \,H(t) \right] (\nu ) &=
\\
E \left[ J_0 (at) \,H(t) \right] (\nu ) &= \frac{\nu^2}{\sqrt{1 + a^2 \nu^2}} .
\end{align*}
■
Example:
Consider the Bessel equation subject to the initial condition
\[
t\,y'' + y' + a^2 t\,y =0, \qquad y(0) =1.
\]
Application of the Elzaki transform yields
\[
\nu^2 \frac{\text d}{{\text d}\nu} \left[ \frac{1}{\nu^2}\,E[y] -1 -\nu y'(0)
\right] + \frac{1}{\nu}\,E[y] -\nu + a^2 \left[ \nu^2 \frac{\text d}{{\text d}\nu}\,E[y] - \nu\,E[y] \right] =0 .
\]
Let us denote by
T(ν) the Elzaki transform of the unknown function
y(
t). The above equation can be rewritten as
\[
T' (\nu ) - \frac{2}{\nu}\, T(\nu ) + a^2 \nu^2 T' (\nu ) - a^2 \nu\,T(\nu ) =0
\]
or separating of variables,
\[
\frac{T' (\nu )}{T(\nu )} = \frac{2}{\nu} - \frac{a^2 \nu}{1 + a^2 \nu^2} .
\]
Integrating both sides, we get
\[
T(\nu ) = \frac{C\,\nu^2}{\sqrt{1 + a^2 \nu^2}} ,
\]
where
C is a constant of integration. Inventing the Elzaki transform,
we obtain
\[
y(t) = E^{-} \left[ T(\nu ) \right] (t) = C\,J_0 \left( at \right) .
\]
■
Example:
Consider the initial value problem for the Euler equation
\[
t^2 y'' + 4t\,y' + 2\,y = 6\,t^2 , \qquad y(0) = y' (0) =0.
\]
First we apply the Sumudu transform to this equation to find
\[
\nu^2 S'' + 4\nu\,S' + 2\,S = 12\,\nu^2 ,
\]
which is the same differential equation. We conclude that the
Sumudu transform does not provide any advantage.
Now if the Elzaki transform to the given equation is applied, it yields
\[
\nu^ \frac{{\text d}^2}{{\text d} \nu^2} \left[ \frac{E[y](\nu )}{\nu^2}
\right] + 4\nu^2\, \frac{{\text d}}{{\text d} \nu} \left[ \frac{E[y](\nu )}{\nu}
\right] + 2\,E[y] = 12\,\nu^2 ,
\]
The general solution to the latter is
\[
E[y] = \nu^4 + c_1 \nu + c_2 .
\]
Using the initial conditions, we find the values of constant
c1 and
c2 to be both zeroes.
By using the inverse Elzaki transform we find the solution in the form:
\( y(t) = t^2 /2 . \)
■
-
Ahmed, S.A., A Comparison between Modified Sumudu Decomposition Method and Homotopy Perturbation Method, Scientific Research, 2018, Vol. 9, No. 3, doi: 10.4236/am.2018.93014
-
Asiru, M.A., Further properties of the Sumudu transform and its applications, International Journal of Mathematical Education in Science and Technology, 2002, Vol. 33, No. 3, pp. 441--449.
-
Belgacem F.B.M. and Karaballi, A.A., “Sumudu transform fundamental properties investigations and applications,” Journal of Applied Mathematics and Stochastic Analysis, pp. 1–23, 2006.
-
Eltayeb, H., Kılıçman, A., and Fisher, B., A new integral transform and associateddistributions,Integral Transforms Spec. Funct.21(2010) 367-379.
-
Elzaki, T.M. and Biazar, J., Homotopy Perturbation Method and Elzaki Transform for Solving System of Nonlinear Partial Differential Equations, World Applied Sciences Journal, 2013, Vol. 24 (7): 944-948; doi: 10.5829/idosi.wasj.2013.24.07.1041
-
Elzaki, T.M. and Kim, H., The Solution of Burger’s Equation by Elzaki Homotopy Perturbation Method, Applied Mathematical Sciences,2014, Vol. 8, No. 59, 2931 - 2940; http://dx.doi.org/10.12988/ams.2014.44314
-
Hussain M.G.M. and Belgacem, F.B.M., Transient solutions of Maxwell’s equations based on Sumudu transform, Progress in Electromagnetics Research, 2007, Vol. 74, 273-289.
-
V. G. Gupta and B. Sharma, “Application of Sumudu transform in reaction-diffusion systems and nonlinear waves,” Applied Mathematical Sciences, vol. 4, no. 9, pp. 435–446, 2010.
-
Kadem, A., Solving the one-dimensional neutron transport equation using Cheby-shev polynomials and the Sumudu transform, Analele Universitatii din Oradea. Fascicola Matematica, 2005, Vol.12, pp. 153-171.
-
Kılıçman A. and Eltayeb, H., On the applications of Laplace and Sumudu transforms, Journal of the Franklin Institute, 2010, vol. 347, no. 5, pp. 848–862, 2010.
-
Kılıçman A. and Eltayeb, H., On the second order linear partial differential equations with variable coefficients andd ouble Laplace transform, Far East J. Math.Sci. (FJMS)34(2009) 257-270.
-
Kılıçman A. and Eltayeb, H., A note on integral transform and partial differentialequations, Appl. Math. Sci. (Ruse)4(2010) 109-118.
-
Kılıçman A. and Eltayeb, H., On a new integral transform and differential equations, Mathematical Problems in Engineering, 2010,
Volume 2010, Article ID 463579, 13 pages
http://dx.doi.org/10.1155/2010/463579
-
Kılıçman A., Eltayeb, H., Atan, A.M., A note on the comparison between Laplace and Sumudu transforms, Bulletin of the Iranian Mathematical Society, 2011, Vol.37, No. 1, pp 131-141.
-
Kılıçman A. and Gadain, H.E., An application of double Laplace transform anddouble Sumudu transform,Lobachevskii J. Math.30(2009) 214-223.
-
-
Pandey, R.K. and Mishea, H.K., Numerical simulation of time-fractional fourth order differential equations via homotopy analysis fractional Sumudu transform method, American Journal of Numerical Analysis, 2015, Vol. 3 No. 3, 52-64
DOI: 10.12691/ajna-3-3-1
-
Rathore, S., Kumar, D., Singh, J., Gupta, S., Homotopy analysis Sumudu transform method for nonlinear equations, Int. J. Industrial Mathematics, 2012, Vol. 4, No. 4, Article ID IJIM-00204, 13 pages
-
Singh, J., Kumar, D., and Sushila, Homotopy perturbation Sumudu transform method for nonlinear equations, Adv. Theor. Appl. Mech., Vol. 4, 2011, no. 4, 165 - 175
-
Watugala, G.K., Sumudu Transform: a new integral transform to solve differential equations and control engineering problems, International Journal of Mathematical Education in Science and Technology, 1993, Vol. 24, No. 1, pp. 35-43
-
Watugala, G.K., The Sumudu transform for functions of two variables, Mathematical Engineering in Industry, 2002, vol. 8, no. 4, pp. 293–302.
-
Weerakoon, S., “Complex inversion formula for Sumudu transform,” International Journal of Mathematical Education in Science and Technology, vol. 29, no. 4, pp. 618–621, 1998.
-
Weerakoon, S., Application of Sumudu transform to partial differential equations, International Journal of Mathematical Education in Science and Technology, vol. 25, no. 2, pp. 277–283, 1994.
-
Zhang, J., A Sumudu based algorithm for solving differential equations,
Computer Science Journal of Moldova, 2007, Vol. 15(3), pp. 303-313
-