Processing math: 100%
Tauberian Theorem: If f(t) and its derivative are piecewise continuous functions of exponential order, then    f(+0)=limλλ0f(t)eλtdt=limλλfL(λ).

Table of Laplace transforms


It is useful to have a “library” of Laplace transforms at hand; some common ones are listed below.
         f(t)           fL(λ) 
eatf(t) fL(λa)
aeabtf(at) fL(λa+b)
eat 1/(λ - 𝑎) 
sin ωt ωλ2+ω2  
tsinωt 2ωλ(λ2+ω2)2
ektsinωt   ω(λk)2+ω2  
sinh ωt   ωλ2ω2  
t sinh ωt   2ωλ(λ2ω2)2  
cosωtωtsinωt λ(λ2ω2)(λ2+ω2)2
cosωt+ωtsinωt λ(λ2+3ω2)(λ2+ω2)2
tp  Γ(p+1)λp+1
(πt)1/2 λ1/2
sinωtt arctanωλ
2t(1cosωt) ln(1+ω2λ2)
      
                        f(t)         fL(λ)
fg(t)=t0f(τ)g(tτ)dτ=gf(t) fLgL
H(t)  1/λ 
δ(t) 
tpekt   Γ(p+1)(λk)p+1  
cos ωt λλ2+ω2  
t cos ωt λ2ω2(λ2+ω2)2
ektcosωt λk(λk)2+ω2
cosh ωt λλ2ω2  
t cosh ωt λ2+ω2(λ2ω2)2  
sinωtωtcosωt 2ω3(λ2+ω2)2
sinωt+ωtcosωt 2ωλ2(λ2+ω2)2
1t(1et) ln(1+1λ)
2tsinhat λ+aλa
2t(1coshat) ln(1a2λ2)
Here
fL=L[f(t)](λ)=0eλtf(t)dt,Γ(ν)=0tν1etdt,H(t)={1,  if t>0,1/2,  if t=0,0,  if t<0.

 

Elementary Properties of the Laplace Transforms


  1. Linearity: L[αf(t)+βg(t)]=αL[f]+βL[g]=αfL+βgL.
  2. The derivative rule: L[f(n)(t)]=λnnk=1λnkf(k1)(+0).
  3. Convolution rule: L[fg]=fLgL.
    Recall that the convolution of two functions f and g is
    (fg)(t)=t0f(tτ)g(τ)dτ=t0g(tτ)f(τ)dτ=(gf)(t).
  4. Shift rule: L[f(ta)H(ta)]=eaλfL(λ).
  5. Similarity rule: L[f(kt)]=1kfL(λk).
  6. Attenuation rule: L[eatf(t)]=fL(λ+a).
  7. Differentiation rule: ddλfL(λ)=L[tf(t)].
  8. Integration rule: L[tnf(t)]=n!λn+1fL(λ).
  9. The Laplace transform of periodic functions.
    If f(t)=f(t+ω), then fL(λ)=0f(t)eλtdt=11eωλω0f(t)eλtdt.
  10. The Laplace transform of anti-periodic functions.
    If f(t)=f(t+ω), then fL(λ)=0f(t)eλtdt=11+eωλω0f(t)eλtdt.
Definition: The full-wave rectifier of a function f(t), defined on a finite interval 0≤tT, is a periodic function with period T that is equal to f(t) on the interval [0,T].
The half-wave rectifier of a function f(t), defined on a finite interval 0≤tT, is a periodic function with period 2T that coincides with f(t) on the interval [0,T] and is identically zero on the interval [T,2T].
half = Plot[f[t], {t, 0, 4*Pi}, PlotStyle -> Thickness[0.015], AspectRatio -> 1, Axes -> False];
txt = Graphics[Text[Style["f(t)", FontSize -> 14, Red], {1.5, 0.3}]];
t0 = Graphics[Text[Style["0", FontSize -> 14, Black], {-0.1, -0.5}]];
t1 = Graphics[Text[Style["T", FontSize -> 14, Black], {3.1, -0.5}]];
t2 = Graphics[Text[Style["2T", FontSize -> 14, Black], {6.3, -0.5}]];
t3 = Graphics[Text[Style["3T", FontSize -> 14, Black], {9.35, -0.5}]];
txt2 = Graphics[Text[Style["f(t)", FontSize -> 14, Red], {7.8, 0.3}]];
Show[txt, half, t0, t1, t2, t3, txt2]
         Full-wave rectifier.
   
         Half-wave rectifier.