It is useful to have a “library” of Laplace transforms at hand; some common
ones are listed below.
f (t )
f L (λ)
e a t f ( t )
f L ( λ − a )
a e − a b t f ( a t )
f L ( λ a + b )
e a t
1/(λ - 𝑎)
sin ωt
ω λ 2 + ω 2
t sin ω t
2 ω λ ( λ 2 + ω 2 ) 2
e k t sin ω t
ω ( λ − k ) 2 + ω 2
sinh ωt
ω λ 2 − ω 2
t sinh ωt
2 ω λ ( λ 2 − ω 2 ) 2
cos ω t − ω t sin ω t
λ ( λ 2 − ω 2 ) ( λ 2 + ω 2 ) 2
cos ω t + ω t sin ω t
λ ( λ 2 + 3 ω 2 ) ( λ 2 + ω 2 ) 2
tp
Γ ( p + 1 ) λ p + 1
( π t ) − 1 / 2
λ − 1 / 2
sin ω t t
arctan ω λ
2 t ( 1 − cos ω t )
ln ( 1 + ω 2 λ 2 )
f (t )
f L (λ)
f ∗ g ( t ) = ∫ t 0 f ( τ ) g ( t − τ ) d τ = g ∗ f ( t )
f L g L
H(t)
1/λ
δ(t)
1
t p e k t
Γ ( p + 1 ) ( λ − k ) p + 1
cos ωt
λ λ 2 + ω 2
t cos ωt
λ 2 − ω 2 ( λ 2 + ω 2 ) 2
e k t cos ω t
λ − k ( λ − k ) 2 + ω 2
cosh ωt
λ λ 2 − ω 2
t cosh ωt
λ 2 + ω 2 ( λ 2 − ω 2 ) 2
sin ω t − ω t cos ω t
2 ω 3 ( λ 2 + ω 2 ) 2
sin ω t + ω t cos ω t
2 ω λ 2 ( λ 2 + ω 2 ) 2
1 t ( 1 − e − t )
ln ( 1 + 1 λ )
2 t sinh a t
∈ λ + a λ − a
2 t ( 1 − cosh a t )
ln ( 1 − a 2 λ 2 )
Here
f L = L [ f ( t ) ] ( λ ) = ∫ ∞ 0 e − λ t f ( t ) d t , Γ ( ν ) = ∫ ∞ 0 t ν − 1 e − t d t , H ( t ) = { 1 , if t > 0 , 1 / 2 , if t = 0 , 0 , if t < 0.
Elementary Properties of the Laplace Transforms
Linearity: L [ α f ( t ) + β g ( t ) ] = α L [ f ] + β L [ g ] = α f L + β g L .
The derivative rule: L [ f ( n ) ( t ) ] = λ n − ∑ n k = 1 λ n − k f ( k − 1 ) ( + 0 ) .
Convolution rule: L [ f ∗ g ] = f L g L .
Recall that the convolution of two functions f and g is
( f ∗ g ) ( t ) = ∫ t 0 f ( t − τ ) g ( τ ) d τ = ∫ t 0 g ( t − τ ) f ( τ ) d τ = ( g ∗ f ) ( t ) .
Shift rule: L [ f ( t − a ) H ( t − a ) ] = e − a λ f L ( λ ) .
Similarity rule: L [ f ( k t ) ] = 1 k f L ( λ k ) .
Attenuation rule: L [ e − a t f ( t ) ] = f L ( λ + a ) .
Differentiation rule: d d λ f L ( λ ) = − L [ t f ( t ) ] .
Integration rule: L [ t n ∗ f ( t ) ] = n ! λ n + 1 f L ( λ ) .
The Laplace transform of periodic functions.
If f ( t ) = f ( t + ω ) , then
f L ( λ ) = ∫ ∞ 0 f ( t ) e − λ t d t = 1 1 − e − ω λ ∫ ω 0 f ( t ) e − λ t d t .
The Laplace transform of anti-periodic functions.
If f ( t ) = − f ( t + ω ) , then
f L ( λ ) = ∫ ∞ 0 f ( t ) e − λ t d t = 1 1 + e − ω λ ∫ ω 0 f ( t ) e − λ t d t .
Definition :
The full-wave rectifier of a function f (t ), defined on a finite interval 0≤t ≤T , is a periodic function with period T that is equal to f (t ) on the interval [0,T ].
The half-wave rectifier of a function f (t ), defined on a finite interval 0≤t ≤T , is a periodic function with period 2T that coincides with f (t ) on the interval [0,T ] and is identically zero on the interval [T ,2T ].
half = Plot[f[t], {t, 0, 4*Pi}, PlotStyle -> Thickness[0.015],
AspectRatio -> 1, Axes -> False];
txt = Graphics[Text[Style["f(t)", FontSize -> 14, Red], {1.5, 0.3}]];
t0 = Graphics[Text[Style["0", FontSize -> 14, Black], {-0.1, -0.5}]];
t1 = Graphics[Text[Style["T", FontSize -> 14, Black], {3.1, -0.5}]];
t2 = Graphics[Text[Style["2T", FontSize -> 14, Black], {6.3, -0.5}]];
t3 = Graphics[Text[Style["3T", FontSize -> 14, Black], {9.35, -0.5}]];
txt2 = Graphics[Text[Style["f(t)", FontSize -> 14, Red], {7.8, 0.3}]];
Show[txt, half, t0, t1, t2, t3, txt2]
Full-wave rectifier.
Half-wave rectifier.