Example 5:
Let us consider the system of differential equations subject to the initial conditions
\[
\begin{split}
\dot{x} &= -6\,x + 4\,y , \\
\dot{y} &= \phantom{-}5\,x -5\,y ;
\end{split}
\qquad x(0) = 2, \quad y(0) =0 .
\tag{5.1}
\]
Of course,
Mathematica knows how to solve it:
DSolve[{x'[t] == -6*x[t] + 4*y[t], y'[t] == 5*x[t] - 5*y[t],
x[0] == 2, y[0] == 0}, {x[t], y[t]}, t]
{{x[t] -> 2/9 E^(-10 t) (5 + 4 E^(9 t)),
y[t] -> 10/9 E^(-10 t) (-1 + E^(9 t))}}
\[
x(t) = \frac{10}{9}\, e^{-10t} + \frac{8}{9}\, e^{-t} , \qquad y(x) = - \frac{10}{9}\, e^{-10t} + \frac{10}{9}\, e^{-t} .
\]
We convert the given IVP into the integral equation:
\[
\begin{bmatrix} x(t) \\ y(t) \end{bmatrix} = \begin{bmatrix} 2 \\ 0 \end{bmatrix} + \int_0^t \begin{bmatrix} -6\,x(s) + 4\,y(s) \\ 5\,x(s) -5\,y(s) \end{bmatrix} {\text d} s = \begin{bmatrix} 2 \\ 0 \end{bmatrix} + \begin{bmatrix} -6&\phantom{-}4 \\ \phantom{-}5 & -5 \end{bmatrix} \int_0^t \begin{bmatrix} x(s) \\ y(s) \end{bmatrix} {\text d} s .
\tag{5.2}
\]
It is useful, but not necessary to rewrite the system of ODEs (5.1) as a single
second order differential equation
\[
\ddot{z} + 11\,\dot{z} + 10\, z =0, \qquad z(0) =2, \quad \dot{z} (0) =-22 ,
\tag{5.3}
\]
where
z =
x −
y. This leads to the following integral equation
\[
z(t) = 2-22t - \int_0^t \left( t-s \right) \left[ 11\,\dot{z} + 10\,z(s) \right] {\text d}s .
\]
Integrating by parts, we obtain
\[
z(t) = 2 - \int_0^t \left[ 11 + 10 \left( t-s \right) \right] z(s)\, {\text d}s .
\tag{5.4}
\]
Eq.(5.4) is used to generate Picard's iterations:
\[
z_{m+1} (t) = 2 - \int_0^t \left[ 11 + 10 \left( t-s \right) \right] z_m (s)\, {\text d}s .
\tag{5.5}
\]
First, we solve the initial value problem with
Mathematica
DSolve[{10 z[t] + 11 Derivative[1][z][t] + (z^\[Prime]\[Prime])[t] ==
0, z[0] == 2, Derivative[1][z][0] == -22}, z[t], t]
{{z[t] -> -(2/9) E^(-10 t) (-10 + E^(9 t))}}
\[
z(t) = \frac{20}{9}\, e^{-10t} - \frac{2}{9}\, e^{-t} .
\]
Expanding this solution into Taylor's series, we obtain
\[
z(t) = 2 - 22\,t + 111\,t^2 - \frac{1111}{3}\, t^3 + \frac{11111}{12}\, t^4 - \frac{37037}{20}\,t^5 + \frac{1111111}{360}\, t^6 - \cdots .
\]
Series[20/9 Exp[-10*t] - 2/9*Exp[-t], {t, 0,
SeriesData[t, 0, {2, -22, 111,
Rational[-1111, 3],
Rational[11111, 12],
Rational[-37037, 20],
Rational[1111111, 360],
Rational[-11111111, 2520],
Rational[12345679, 2240]}, 0, 9, 1]
Now we apply iteration scheme (5.4) and obtain some approximations:
z[0][t_] =2;
z[1][t_] = 2 - Integrate[(11 + 10*(t - s))*z[0][s], {s, 0, t}]
2 - 22 t - 10 t^2
z[2][t_] = 2 - Integrate[(11 + 10*(t - s))*z[1][s], {s, 0, t}]
2 - 22 t + 111 t^2 + (220 t^3)/3 + (25 t^4)/3
z[3][t_] = 2 - Integrate[(11 + 10*(t - s))*z[2][s], {s, 0, t}]
2 - 22 t + 111 t^2 - (1111 t^3)/3 - (1765 t^4)/6 - 55 t^5 - (25 t^6)/9
z[4][t_] = 2 - Integrate[(11 + 10*(t - s))*z[3][s], {s, 0, t}]
2 - 22 t + 111 t^2 - (1111 t^3)/3 + (11111 t^4)/12 + (2497 t^5)/3 + (
1790 t^6)/9 + (1100 t^7)/63 + (125 t^8)/252
z[5][t_] = 2 - Integrate[(11 + 10*(t - s))*z[4][s], {s, 0, t}]
2 - 22 t + 111 t^2 - (1111 t^3)/3 + (11111 t^4)/12 - (
37037 t^5)/20 - (22015 t^6)/12 - (3575 t^7)/7 - (1250 t^8)/21 - (
6875 t^9)/2268 - (125 t^10)/2268
So the sixth iterate becomes
\[
z_6 (t) = 2 - 22\,t + 111\,t^2 - \frac{1111}{3}\, t^3 + \frac{11111}{12}\, t^4 - \frac{37037}{20}\,t^5 + \frac{1111111}{360}\, t^6 - \frac{19943}{6}\, t^7 + \cdots .
\]
|
 
|
Now we plot 6-th Picard's polynomial approximation along with a true solution z(t).
phi6[t_] =
2 - 22 t + 111 t^2 - (1111 t^3)/3 + (11111 t^4)/12 - (37037 t^5)/
20 + (1111111 t^6)/360 + (19943 t^7)/6 + (346025 t^8)/336 + (
108625 t^9)/756 + (45125 t^10)/4536 + (125 t^11)/378 + (625 t^12)/
149688;
z[t_] = 20/9 Exp[-10*t] - 2/9*Exp[-t];
Plot[{Callout[phi6[t], "Picard", LabelStyle -> Medium],
Callout[z[t], "true", LabelStyle -> Medium]}, {t, 0, 0.33},
PlotTheme -> "Business"]
|
Figure 6a: Picard's approximation ϕ6(t) along with the true solution z(t).
|
|
matlab code
|
We can express variables
x and
y through
z:
\[
\dot{z} = \dot{x} - \dot{y} = -6 \,x + 4\,y - 5\,x + 5\,y = -11\,x + 9\,y .
\]
Upon solving this system of algebraic equations, we get
\[
\begin{split}
z &= x-y , \\
\dot{z} &= -11\,x + 9\,y .
\end{split}
\]
matlab helps:
Solve[{z == x - y, zdot == -11*x + 9*y}, {x, y}]
{{x -> 1/2 (-9 z - zdot), y -> 1/2 (-11 z - zdot)}}
This yields
\[
x = - \frac{1}{2} \left( 9\, z + \dot{z} \right) \qquad\mbox{and}\qquad
y = - \frac{1}{2} \left( 11\, z + \dot{z} \right) .
\]
Picard's iteration for system (5.1) becomes
\[
\begin{bmatrix} x(t) \\ y(t) \end{bmatrix}_{(m+1)} =
\begin{bmatrix} 2 \\ 0 \end{bmatrix} + \int_0^t \begin{bmatrix}
-6\,x(s) + 4\,y(s) \\ 5\,x(s) - 5\,y(s) \end{bmatrix}_{(m)} \,{\text d}s ,
\qquad m=0,1,2,\ldots .
\tag{5.6}
\]
Calculating the first few iterations, we obtain
\[
\begin{split}
\begin{bmatrix} x (t) \\ y(t) \end{bmatrix}_{(1)} &=
\begin{bmatrix} 2 \\ 0 \end{bmatrix} + \int_0^t \begin{bmatrix}
-6\,x(0) + 4\,y(0) \\ 5\,x(0) - 5\,y(0) \end{bmatrix} = \begin{bmatrix} 2 - 12\,t
\\ 10\,t \end{bmatrix} ,
\\
\begin{bmatrix} x (t) \\ y(t) \end{bmatrix}_{(2)} &=
\begin{bmatrix} 2 \\ 0 \end{bmatrix} + \int_0^t \begin{bmatrix}
-6\,x_1 (s) + 4\,y_1 (s) \\ 5\,x_1 (s) - 5\,y_1 (s) \end{bmatrix} = \begin{bmatrix} 2 - 12\,t
+ 56\, t^2 \\ 10\,t - 55\, t^2 \end{bmatrix} ,
\\
\begin{bmatrix} x (t) \\ y(t) \end{bmatrix}_{(3)} &= \begin{bmatrix} 2 - 12\,t
+ 56\, t^2 - \frac{556}{3}\, t^3 \\ 10\,t - 55\, t^2 + 185\, t^3
\end{bmatrix} .
\end{split}
\]
Using the single differential equation, we have
\[
\phi_{m+1} (t) = 2 -22t - \int_0^t \left( t-s \right) \left[ 11\,\phi'_m (s)
+ 10\,\phi_m (s) \right] {\text d} s, \qquad \phi_0 = 2, \quad
\dot{\phi}_0 = -22 , \qquad m=0,1,2,\ldots .
\]
Again, the first few iterations are
\[
\begin{split}
\phi_1 (t) &= 2 - 22\,t + 111\,t^2 \qquad \Longrightarrow \qquad \dot{\phi}_1 = -22 + 222\, t ,
\\
\phi_2 (t) &= 2 - 22\,t + 111\,t^2 - \frac{1111}{3}\, t^3 - \frac{185}{2}\, t^4 \qquad \Longrightarrow \qquad \dot{\phi}_1 = -22 + 222\, t - 1111\, t^2 - 370\, t^3 ,
\\
\phi_3 (t) &= 2 - 22\,t + 111\,t^2 - \frac{1111}{3}\, t^3 - \frac{185}{2}\, t^4 \qquad \Longrightarrow \qquad \dot{\phi}_1 = -22 + 222\, t - 1111\, t^2 - 370\, t^3 .
\end{split}
\]
As we see, single equation iteration is faster than the previous. We can compare our single equation iteration with Picard's scheme for the original system of first order equations:
\[
x_1 = - \frac{1}{2} \left( 9\, \phi_1 + \dot{\phi}_1 \right) = -2 + 12\,t + \frac{999}{2}\, t^2
\]
Based on the single differential equation
\( \ddot{z} + 11\,\dot{z} + 10\, z =0, \) we
transfer it to the system of first order equations using standard substitutions:
\[
\dot{z} = u, \qquad \dot{u} = -11\, u -10\, z .
\]
This leads to the following Picard's scheme:
\[
\begin{bmatrix} z(t) \\ u(t) \end{bmatrix}_{(m+1)} = \begin{bmatrix} 2 \\ -22
\end{bmatrix} + \int_0^t \begin{bmatrix} u(s) \\ -11\,u(s) - 10\,z(s)
\end{bmatrix}_{(m)} {\text d}s , \qquad m=0,1,2,\ldots .
\]
A first few terms are
\[
\begin{split}
\begin{bmatrix} z(t) \\ u(t) \end{bmatrix}_{(1)} &= \begin{bmatrix} 2 - 22\,t
\\ -22 + 222\,t \end{bmatrix} ,
\\
\begin{bmatrix} z(t) \\ u(t) \end{bmatrix}_{(2)} &= \begin{bmatrix} 2 - 22\,t
+ 111\,t^2 \\ -22 + 222\,t - 1111\,t^2 \end{bmatrix} ,
\\
\begin{bmatrix} z(t) \\ u(t) \end{bmatrix}_{(3)} &= \begin{bmatrix} 2 - 22\,t
+ 111\,t^2 - \frac{1111}{3}\,t^3 \\ -22 + 222\,t - 1111\,t^2 -
\frac{11111}{3}\, t^3 \end{bmatrix} .
\end{split}
\]
■