An important theme in matrix analysis and computations is the reduction of matrices to ones with special properties, properties that make the problem at hand easy to solve. One of the most powerful tools in matrix algebra is the ability to break a matrix into
parts larger than scalars and express the basic matrix operations in terms of these parts. The parts are called submatrices, and the act of breaking up a matrix into submatrices is called partitioning.
What makes the matrix partitions so poweful technique is its ability to utilize abstract matrices having entries as arbitrary algebraic objects. However, in this section, we demonstrate this tool only to naïve matrices with entries from a field 𝔽, which is either ℤ (integers) or ℚ (rational numbers) or ℝ (real numbers) or ℂ (complex numbers). The set of all m × n matrices with entries from 𝔽 is denoted by 𝔽m×n or 𝔽m,n .
When matrices are too large to fit in a computer’s high-speed memory,
partitioning permits the computer to work with only two or three submatrices
at a time. Professional software for high-performance numerical linear algebra, such as
LAPACK , makes intensive use of partitioned matrix calculations.
Block Matrices
A submatrix of a rectangular matrix A is any matrix obtained from A by deleting rows and columns.
A matrix A as a single object is called block matrix or a partitioned matrix when its elements are themselves matrices, which are submatrices of A .
A block matrix is defined in terms of a partitioning, which breaks a matrix into contiguous pieces. In general, a b;ock matrix is a matrix of the form
\begin{equation} \label{EqBlock.1}
{\bf A} = \left[ \begin{array}{ccccc} a_{1,1} & a_{1,2} &\cdots & a_{1,n} \\
a_{2,1} & a_{2,2} & \cdots & a_{2,n} \\
\vdots & \vdots & \ddots & \vdots \\
a_{m,1} & a_{m,2} & \cdots & a_{m,n} \end{array} \right] = \left[ \begin{array}{ccccc} \mathbf{A}_{1,1} & {\bf A}_{1,2} &\cdots & \mathbf{A}_{1,q} \\
{\bf A}_{2,1} & {\bf A}_{2,2} & \cdots & {\bf A}_{2,q} \\
\vdots & \vdots & \ddots & \vdots \\
\mathbf{A}_{p,1} & \mathbf{A}_{p,2} & \cdots & \mathbf{A}_{p,q} \end{array} \right] \in \mathbb{F}^{m\times n} ,
\end{equation}
where each
A i,j is itself a matrix (possibly 1 × 1), and dimensions of these submatrices must be consistent-that is, all matrices in a given row must have the same number of rows, and all matrices in a given column must
have the same number of columns. This partitioned matrix \eqref{EqBlock.1} is called a
block matrix .
For example,
\[
{\bf A} = \left[ \begin{array}{cc|c|ccc}
1&2&3&4&5&6 \\
6&5&4&3&2&1 \\ \hline
3&3&4&5&5&5 \\
2&2&3&4&4&4 \\
1&1&2&3&3&3
\end{array} \right] = \left[ \begin{array}{cccc} {\bf A}_{1,1} & \mathbf{A}_{1,2} & {\bf A}_{1,3} \\
{\bf A}_{2,1} & {\bf A}_{2,2} & {\bf A}_{2,3} \end{array} \right] ,
\]
where the block matrices are
\[
{\bf A}_{1,1} = \begin{bmatrix} 1&2 \\ 6&5 \end{bmatrix} , \quad {\bf A}_{1,2} = \begin{bmatrix} 3 \\ 4 \end{bmatrix} , \quad {\bf A}_{1,3} = \begin{bmatrix} 4&5&6 \\ 3&2&1 \end{bmatrix} ,
\]
and
\[
{\bf A}_{2,1} = \begin{bmatrix} 3&3 \\ 2&2 \\ 1&1 \end{bmatrix} , \quad {\bf A}_{2,2} = \begin{bmatrix} 4\\ 3\\ 2 \end{bmatrix} , \quad {\bf A}_{2,3} = \begin{bmatrix} 5&5&5 \\ 4&4&4 \\ 3&3&3 \end{bmatrix} ,\.
\]
Every rectangular matrix with more than two rows and columns can be represented as a 2 × 2 block matrix:
\[
{\bf A} = \left[ \begin{array}{c|cccc}
a_{1,1} & a_{1,2}& a_{1,3} & \cdots & a_{1,n}
\\ \hline
a_{2,1} & a_{2,2} & a_{2,3} & \cdots & a_{2,n} \\
\vdots & \vdots & \vdots & \ddots & \vdots \\
a_{m,1} & a_{m,2} & a_{m,3} & \cdots & a_{m,n}
\end{array} \right] = \left[ \begin{array}{c|cccc} a_{1,1} & {\bf u}^{\mathrm T} \\ \hline
{\bf v} & {\bf A}_{2,2} \end{array} \right] ,
\]
where
\[
{\bf A}_{2,2} = \left[ \begin{array}{ccccc} a_{2,2} & a_{2,3} & \cdots & a_{2,n} \\
\vdots & \vdots & \ddots & \vdots \\ a_{m,2} & a_{m,3} & \cdots & a_{m,n} \end{array} \right] , \quad {\bf u} = \begin{bmatrix} a_{1,2} \\ a_{1,3} \\ \vdots \\ a_{1,n} \end{bmatrix} , \quad {\bf v} = \begin{bmatrix} a_{2,1} \\ a_{3,1} \\ \vdots \\ a_{m,1} \end{bmatrix} .
\]
Likewise,
\[
{\bf A} = \left[ \begin{array}{cccc|c}
a_{1,1} & a_{1,2}& a_{1,3} & \cdots & a_{1,n}
\\
\vdots & \vdots & \vdots & \ddots & \vdots \\
a_{m-1,1} & a_{m-1,2} & a_{m-1,3} & \cdots & a_{m-1,n} \\ \hline
a_{m,1} & a_{m,2} & a_{m,3} & \cdots & a_{m,n}
\end{array} \right] = \left[ \begin{array}{c|cccc} {\bf A}_{1,1} & {\bf u} \\ \hline
{\bf v}^{\mathrm T} & a_{m,n} \end{array} \right] ,
\]
where
\[
{\bf A}_{1,1} = \left[ \begin{array}{ccccc} a_{1,1} & a_{1,2} & \cdots & a_{1,n-1} \\
\vdots & \vdots & \ddots & \vdots \\ a_{m-1,1} & a_{m-1,2} & \cdots & a_{m-1,n-1} \end{array} \right] , \quad {\bf u} = \begin{bmatrix} a_{1,n} \\ a_{2,n} \\ \vdots \\ a_{m-1,n-1} \end{bmatrix} , \quad {\bf v} = \begin{bmatrix} a_{m,1} \\ a_{m,2} \\ \vdots \\ a_{m,n-1} \end{bmatrix} .
\]
It is clear that with this approach, we can represent any matrix as a 2 × 2 b;ock matrix. This flexiblity of thinking about the
process of matrix manipulation can reveal concise proofs of important theorems
and expose new results.
Partitoned matrices appear in most modern applications of linear
algebra because the notation highlights essential structures of matrices.
In particular, partitoned matrices play an essential role in the
finite element method and other modern algorithms.
Partititoning a matrix is a generalization to used previously a list of
columns or rows. Intuitively, a matrix interpreted as a block matrix can be
visualized as the original matrix with a collection of horizontal and vertical
lines, which break it up, or partition it, into a collection of smaller
matrices. Especially when dimensions of a matrix are large, it may be
beneficial to view a matrix as combined from smaller submatrices. If we
simultaneously partition adjacent rows and adjacent columns of a matrix into
groups, this partitions the matrix into submatrices or blocks, resulting
in a representation of the matrix as a partitioned or block matrix.
Example 1:
Partition of 4×5 matrix.
Example 1: We partition a
\( 4 \times 5 \) matrix into 6 blocks:
\[
{\bf M} = \begin{bmatrix} 1&-2&3&-1&4 \\ 3&1&-2&4&-2 \\ 5&4&-3&1&1 \\ 2&-3&4&2&-3
\end{bmatrix} = \left[ \begin{array}{cc|cc|c} 1&-2&3&-1&4 \\ 3&1&-2&4&-2 \\ \hline 5&4&-3&1&1 \\ \hline 2&-3&4&2&-3
\end{array} \right]
= \begin{bmatrix} {\bf A}_{11} & {\bf A}_{12} & {\bf A}_{13} \\ {\bf A}_{21} & {\bf A}_{22} & {\bf A}_{23} \\
{\bf A}_{31} & {\bf A}_{32} & {\bf A}_{33}
\end{bmatrix} ,
\]
where the block matrices have the following entries:
\[
{\bf A}_{11} = \begin{bmatrix} 1&-2 \\ 3&1 \end{bmatrix} , \quad {\bf A}_{12} = \begin{bmatrix} 3&-1 \\ -2&4 \end{bmatrix} , \quad
{\bf A}_{13} = \begin{bmatrix} 4 \\ -2 \end{bmatrix} , \quad {\bf A}_{31} = \begin{bmatrix} 2&-3 \end{bmatrix} , \quad
{\bf A}_{32} = \begin{bmatrix} 4&2 \end{bmatrix} , \quad {\bf A}_{33} = \begin{bmatrix} -3 \end{bmatrix} .
\]
■
End of Example 1
Linear Combinations of Block Matrices
If matrices
A and
B are of the same size and are partitioned in exactly the same way,
then it is natural to make the same partition of the ordinary matrix sum
A +
B ,
and sum corresponding blocks. Similarly, one can subtract the partitioned matrices. Multiplication of a partitioned
matrix by a scalar is also computed block by block.
Validity of linear combinations of blosk matrices follows from general rules of matrices. For instance, if we have two 2 × 2 block matrices, then for any scalars λ and μ, we have
\begin{align*}
\lambda {\bf A} + \beta {\bf B} &= \lambda \left[ \begin{array}{c|c} \mathbf{A}_{1,1} & \mathbf{A}_{1,2} \\ \hline
{\bf A}_{2,1} & {\bf A}_{2,2}\end{array} \right] + \mu \left[ \begin{array}{c|c} \mathbf{B}_{1,1} & {\bf B}_{1,2} \\ \hline \mathbf{B}_{2,1} & {\bf B}_{2,2} \end{array} \right]
\\
&= \left[ \begin{array}{c|c} \lambda \mathbf{A}_{1,1} + \mu \mathbf{B}_{1,1} & \lambda \mathbf{A}_{1,2} + \mu \mathbf{B}_{1,2} \\ \hline
\mathbf{A}_{2,1} + \mu \mathbf{B}_{2,1} & \lambda \mathbf{A}_{2,2} + \mu \mathbf{B}_{2,2}\end{array} \right] ,
\end{align*}
subject that all components of these block matrices have compatible dimensions.
Multiplication of Block Matrices
It is possible to use a block partitioned matrix product that involves only algebra on submatrices of the
factors. The partitioning of the factors is not arbitrary, however, and requires "conformable partitions" between two
matrices A and B such that all submatrix products that will be used are defined
in usual row-column rule.
We are going to extend our definition of column partition to define a product of two block matrices. Suppose that matrix B is represented as an array of column vectors:
\[
{\bf B} = \begin{bmatrix} \mathbf{b}_1 & \mathbf{b}_2 & \cdots & \mathbf{b}_p \end{bmatrix} ,
\]
where
b ₁,
b ₂, … ,
b p are column vectors or block vectors. Matrix/vector multiplication can be bundled together
\[
{\bf A}\, {\bf B} = {\bf A}\, \begin{bmatrix} \mathbf{b}_1 & \mathbf{b}_2 & \cdots & \mathbf{b}_p \end{bmatrix} = \begin{bmatrix} {\bf A}\,\mathbf{b}_1 & {\bf A}\,\mathbf{b}_2 & \cdots & {\bf A}\,\mathbf{b}_p \end{bmatrix} ,
\]
subject that all products
A b i are valid.
Example 2:
Multiplication of partitioned matrices.
Example 2:
Let us consider two matrices:
\[
{\bf A}
= \left[ \begin{array}{cc|cc|c} 1&-2&3&-1&4 \\ 3&1&-2&4&-2 \\ \hline 5&4&-3&1&1 \\ \hline 2&-3&4&2&-3
\end{array} \right]
= \begin{bmatrix} {\bf A}_{11} & {\bf A}_{12} & {\bf A}_{13} \\ {\bf A}_{21} & {\bf A}_{22} & {\bf A}_{23} \\
{\bf A}_{31} & {\bf A}_{32} & {\bf A}_{33}
\end{bmatrix} ,
\]
and
\[
{\bf B} = \left[ \begin{array}{c} 6 \\ -3 \\ \hline 1 \\ 4 \\ \hline -1
\end{array} \right] = \left[ \begin{array}{c} {\bf B}_1 \\ {\bf B}_2 \\ {\bf B}_3 \end{array} \right] .
\]
that we patition as shown above.
Then their formal multiplication would be
\[
{\bf A}\,{\bf B} = \begin{bmatrix} {\bf A}_{11} {\bf B}_1 + {\bf A}_{12} {\bf B}_2 + {\bf A}_{13} {\bf B}_3 \\
{\bf A}_{21} {\bf B}_1 + {\bf A}_{22} {\bf B}_2 + {\bf A}_{23} {\bf B}_3 \\
{\bf A}_{31} {\bf B}_1 + {\bf A}_{32} {\bf B}_2 + {\bf A}_{33} {\bf B}_3 \end{bmatrix} ,
\]
where
\[
{\bf A}_{11} {\bf B}_1 = \begin{bmatrix} 1&-2 \\ 3&1 \end{bmatrix} \begin{bmatrix} 6 \\ -3 \end{bmatrix} = \begin{bmatrix} 12 \\ 15 \end{bmatrix} , \qquad
{\bf A}_{12} {\bf B}_2 = \begin{bmatrix} 3&-1 \\ -2& 4 \end{bmatrix} \begin{bmatrix} 1 \\ 4 \end{bmatrix} = \begin{bmatrix} -1 \\ 14 \end{bmatrix} , \qquad
{\bf A}_{13} {\bf B}_3 = \begin{bmatrix} 4 \\ -2 \end{bmatrix} \begin{bmatrix} -1 \end{bmatrix} = \begin{bmatrix} -4 \\ 2 \end{bmatrix} ,
\]
\[
{\bf A}_{21} {\bf B}_1 = \begin{bmatrix} 5 & 4 \end{bmatrix} \begin{bmatrix} 6 \\ -3 \end{bmatrix} = \begin{bmatrix} 18 \end{bmatrix} , \qquad
{\bf A}_{22} {\bf B}_2 = \begin{bmatrix} -3&1 \end{bmatrix} \begin{bmatrix} 1 \\ 4 \end{bmatrix} = \begin{bmatrix} 1 \end{bmatrix} , \qquad
{\bf A}_{23} {\bf B}_3 = \begin{bmatrix} 1 \end{bmatrix} \begin{bmatrix} -1 \end{bmatrix} = \begin{bmatrix} -1 \end{bmatrix} ,
\]
\[
{\bf A}_{31} {\bf B}_1 = \begin{bmatrix} 2&-3 \end{bmatrix} \begin{bmatrix} 6 \\ -3 \end{bmatrix} = \begin{bmatrix} 21 \end{bmatrix} , \qquad
{\bf A}_{32} {\bf B}_2 = \begin{bmatrix} 4&2 \end{bmatrix} \begin{bmatrix} 1 \\ 4 \end{bmatrix} = \begin{bmatrix} 12 \end{bmatrix} , \qquad
{\bf A}_{33} {\bf B}_3 = \begin{bmatrix} -3 \end{bmatrix} \begin{bmatrix} -1 \end{bmatrix} = \begin{bmatrix} 3 \end{bmatrix} .
\]
Combining all terms together, we get a column vector:
\[
{\bf A}\,{\bf B} = \left[ \begin{array}{c} 7 \\ 31 \\ \hline 18 \\ \hline 36 \end{array} \right] = \left[ \begin{array}{c} 7 \\ 31 \\ 18 \\ 36 \end{array} \right] .
\]
We check calculations with
Mathematica:
A = {{ 1, -2, 3, -1, 4},{3, 1, -2, 4, -2},{5, 4, -3, 1, 1},{2, -3, 4, 2, -3}}
B = {{6}, {-3}, {1}, {4}, {-1}}
A.B
Out[1]= {{7}, {31}, {18}, {36}}
Now we apply regular matrix/vector multiplication
\begin{align*}
{\bf A}\,{\bf B} &= \begin{bmatrix} 1&-2& \phantom{-}3&-1& \phantom{-}4 \\ 3& \phantom{-}1&-2& \phantom{-}4&-2 \\ 5& \phantom{-}4&-3& \phantom{-}1& \phantom{-}1 \\ 2&-3& \phantom{-}4& \phantom{-}2&-3 \end{bmatrix} \left[ \begin{array}{c} \phantom{-}6 \\ -3 \\ \phantom{-}1 \\ \phantom{-}4 \\ -1 \end{array} \right]
\\
&= \left[ \begin{array}{c} 7 \\ 31 \\ 18 \\ 36 \end{array} \right] .
\end{align*}
■
End of Example 2
Suppose that we are given two matrices A m×p and B p×n that are partitioned as follows:
\[
{\bf A}_{m\times p} = \begin{bmatrix} {\bf E}_{r\times k} & {\bf F}_{r\times p-k} \\ {\bf G}_{m- r\times k} & {\bf H}_{m - r\times p-k} \end{bmatrix} \qquad \mbox{and} \qquad
{\bf B}_{p\times n} = \begin{bmatrix} {\bf P}_{k\times l} & {\bf Q}_{k\times n-l} \\ {\bf R}_{p- k\times l} & {\bf S}_{p- k\times n-l} \end{bmatrix} .
\]
Then their product is
\[
{\bf A}\, {\bf B} = \begin{bmatrix} \left( {\bf E}\,{\bf P} + {\bf F}\,{\bf R} \right)_{r\times l} & \left( {\bf E}\,{\bf Q} + {\bf F}\,{\bf S} \right)_{r\times n - l} \\
\left( {\bf G}\,{\bf P} + {\bf H}\,{\bf R} \right)_{m- r\times l} & \left( {\bf G}\,{\bf Q} + {\bf H}\,{\bf S} \right)_{m-r\times n - l} \end{bmatrix} .
\]
Example 3:
Product of two block matrices.
Example 3:
Suppose we are given two rectangular matrices:
\[
{\bf A} = \begin{bmatrix} \phantom{-}2 & 1 & 1 \\ -2& 3 &0 \\ -1&0& 1 \\ -3&1&2 \end{bmatrix} \qquad \mbox{and} \qquad {\bf B} = \begin{bmatrix} -1& 1 & -1 & 1 \\ \phantom{-}2 & 1 & \phantom{-}1 & 0 \\ \phantom{-}3 & 2 & \phantom{-}2 & 1 \end{bmatrix} .
\]
We find their product by partition these matrices:
\[
{\bf A} = \begin{bmatrix} {\bf E} & {\bf F} \\ {\bf G} & {\bf H} \end{bmatrix}\qquad \mbox{and} \qquad {\bf B} = \begin{bmatrix} {\bf P} & {\bf Q} \\ {\bf R} & {\bf S} \end{bmatrix} ,
\]
where
\[
\mathbf{E} = \begin{bmatrix} \phantom{-}2&1 \\ -2&3 \end{bmatrix} , \quad \mathbf{F} = \begin{bmatrix} 1 \\ 0 \end{bmatrix} , \quad \mathbf{G} = \begin{bmatrix} -1 &1 \\ -3&1 \end{bmatrix} , \quad \mathbf{H} = \begin{bmatrix} 1 \\ 2 \end{bmatrix} ,
\]
and
\[
\mathbf{P} = \begin{bmatrix} -1&1 \\ \phantom{-}2&1 \end{bmatrix} , \quad \mathbf{Q} = \begin{bmatrix} -1&1 \\ \phantom{-}1&0 \end{bmatrix} , \quad \mathbf{R} = \begin{bmatrix} 3&2 \end{bmatrix} , \quad \mathbf{S} = \begin{bmatrix} 2&1 \end{bmatrix} .
\]
Then the product of two given matrices is given by the formula
\[
{\bf A}\,{\bf B} = \begin{bmatrix} {\bf E}\,{\bf P} + {\bf F}\,{\bf R} & {\bf E}\,{\bf Q} + {\bf F}\,{\bf S} \\ {\bf G}\,{\bf P} + {\bf H}\,{\bf R} & {\bf G}\,{\bf Q} + {\bf H}\,{\bf S} \end{bmatrix}
\]
and
\[
{\bf B}\,{\bf A} = \begin{bmatrix} {\bf P}\,{\bf E} + {\bf Q}\,{\bf G} & {\bf P}\,{\bf F} + {\bf Q}\,{\bf H} \\ {\bf R}\,{\bf E} + {\bf S}\,{\bf G} & {\bf R}\,{\bf F} + {\bf S}\,{\bf H} \end{bmatrix} .
\]
We calculate each product separately:
\begin{align*}
{\bf E}\,{\bf P} &= \begin{bmatrix} \phantom{-}2&1 \\ -2&3 \end{bmatrix} \begin{bmatrix} -1&1 \\ \phantom{-}2&1 \end{bmatrix}
= \begin{bmatrix} 0&3 \\ 8&1\end{bmatrix} ,
\\
{\bf F}\,{\bf R} &= \begin{bmatrix} 1 \\ 0 \end{bmatrix} \begin{bmatrix} 3 &2\end{bmatrix}
= \begin{bmatrix} 3&2 \\ 0&0\end{bmatrix} ,
\\
{\bf E}\,{\bf P} + {\bf F}\,{\bf R} &= \begin{bmatrix} 3&5 \\ 8&1 \end{bmatrix}
\\
{\bf E}\,{\bf Q} &= \begin{bmatrix} \phantom{-}2&1 \\ -2&3 \end{bmatrix} \begin{bmatrix} -1&1 \\ \phantom{-}1&0 \end{bmatrix}
= \begin{bmatrix} -1& \phantom{-}2 \\ \phantom{-}5&-2 \end{bmatrix} ,
\\
{\bf F}\,{\bf S} &= \begin{bmatrix} 1 \\ 0 \end{bmatrix} \begin{bmatrix} 2 & 1\end{bmatrix}
= \begin{bmatrix} 2&1 \\ 0&0 \end{bmatrix} ,
\\
{\bf E}\,{\bf Q} + {\bf F}\,{\bf S} &= \begin{bmatrix} 1&\phantom{-}3 \\ 5 & -2 \end{bmatrix} ,
\end{align*}
e = {{2, 1}, {-2, 3}}
P = {{-1,1} , {2,1}}
e.P
{{0, 3}, {8, 1}}
F = {{1}, {0}}
R = {{3, 2}}
F.R
{{3, 2}, {0, 0}}
e = {{2, 1}, {-2, 3}}
Q = {{-1, 1}, {1, 0}}
e.Q
{{-1, 2}, {5, -2}}
F = {{1}, {0}}
S = {{2, 1}}
F.S
{{2, 1}, {0, 0}}
\begin{align*}
{\bf G}\,{\bf P} &= \begin{bmatrix} -1&1 \\ -3&1 \end{bmatrix} \begin{bmatrix} -1&1 \\ \phantom{-}2&1 \end{bmatrix}
= \begin{bmatrix} 3&\phantom{-}0 \\ 7&-1 \end{bmatrix} ,
\\
{\bf H}\,{\bf R} &= \begin{bmatrix} 1 \\ 2 \end{bmatrix} \begin{bmatrix} 3 &2 \end{bmatrix}
= \begin{bmatrix} 3&2 \\ 6&4 \end{bmatrix} ,
\\
{\bf G}\,{\bf P} + {\bf H}\,{\bf R} &= \begin{bmatrix} 6&2 \\ 13&3 \end{bmatrix} ,
\\
{\bf G}\,{\bf Q} &= \begin{bmatrix} -1&1 \\ \phantom{-}1&0 \end{bmatrix} \begin{bmatrix} -1&1 \\ \phantom{-}1&0 \end{bmatrix}
= \begin{bmatrix} 2& -1 \\ 5&-3 \end{bmatrix} ,
\\
{\bf H}\,{\bf S} &= \begin{bmatrix} 1 \\ 2 \end{bmatrix} \begin{bmatrix} 2 & 1\end{bmatrix}
= \begin{bmatrix} 2&1 \\ 4&2 \end{bmatrix} ,
\\
{\bf G}\,{\bf Q} + {\bf H}\,{\bf S} &= \begin{bmatrix} 4&0 \\ 9 & -1 \end{bmatrix} ,
\end{align*}
G.P
{{3, 0}, {7, -1}}
H.R
{{3, 2}, {6, 4}}
G.Q
{{2, -1}, {5, -3}}
H.S
{{2, 1}, {4, 2}}
Adding these products, we determine the product
A B :
\[
{\bf A}\,{\bf B} = \begin{bmatrix} 3& 5& 1& 3 \\ 8& 1& 5& -2 \\ 4& 1& 3& 0 \\ 11& 2& 8& -1 \end{bmatrix}
\]
A = {{2, 1, 1}, {-2, 3, 0}, {-1, 0, 1}, {-3, 1, 2}};
B = {{-1, 1, -1, 1}, {2, 1, 1, 0}, {3, 2, 2, 1}};
A.B
{{3, 5, 1, 3}, {8, 1, 5, -2}, {4, 1, 3, 0}, {11, 2, 8, -1}}
Similarly, we obtain
\begin{align*}
{\bf P}\,{\bf E} &= \begin{bmatrix} -1&1 \\ 2&1 \end{bmatrix} \begin{bmatrix} \phantom{-}2&1 \\ -2&3 \end{bmatrix}
= \begin{bmatrix} -4& 2 \\ 2& 5 \end{bmatrix} ,
\\
{\bf Q}\,{\bf G} &= \begin{bmatrix} -1&1 \\ 1&0 \end{bmatrix} \begin{bmatrix} -1 &1 \\ -3&1 \end{bmatrix}
= \begin{bmatrix} -2& 1 \\ -1& 1 \end{bmatrix} ,
\\
{\bf P}\,{\bf E} + {\bf Q}\,{\bf G} &= \begin{bmatrix} -6& 3 \\ 1& 6 \end{bmatrix} ,
\\
{\bf P}\,{\bf F} &= \begin{bmatrix} -1&1 \\ 2&1 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \end{bmatrix} = \begin{bmatrix} -1& 2 \end{bmatrix} ,
\\
{\bf Q}\,{\bf H} &= \begin{bmatrix} -1&1 \\ \phantom{-}1&0 \end{bmatrix} \begin{bmatrix} \end{bmatrix} = \begin{bmatrix} 1 \\ 1 \end{bmatrix} ,
\\
{\bf P}\,{\bf F} + {\bf Q}\,{\bf H} &= \begin{bmatrix} 0 \\ 3 \end{bmatrix}
\end{align*}
P.e
{{-4, 2}, {2, 5}}
Q.G
{{-2, 1}, {-1, 1}}
P.F
{{0}, {3}}
Q.H
{{1}, {1}}
\begin{align*}
{\bf R}\,{\bf E} &= \begin{bmatrix} 3&2 \end{bmatrix} \begin{bmatrix} \phantom{-}2&1 \\ -2&3 \end{bmatrix}
= \begin{bmatrix} 2 \\ 9 \end{bmatrix} ,
\\
{\bf S}\,{\bf G} &= \begin{bmatrix} 2& 1 \end{bmatrix} \begin{bmatrix} -1 &1 \\ -3&1 \end{bmatrix}
= \begin{bmatrix} -5& 4 \end{bmatrix} ,
\\
{\bf R}\,{\bf E} + {\bf S}\,{\bf G} &= \begin{bmatrix} -3& 13 \end{bmatrix} ,
\\
{\bf R}\,{\bf F} &= \begin{bmatrix} 3& 2 \end{bmatrix} \begin{bmatrix} 1 \\ 0 \end{bmatrix} = \begin{bmatrix} 3 \end{bmatrix} ,
\\
{\bf S}\,{\bf H} &= \begin{bmatrix} 2&1 \phantom{-}1&0 \end{bmatrix} \begin{bmatrix} 1 \\ 2 \end{bmatrix} = \begin{bmatrix} 4 \end{bmatrix} ,
\\
{\bf R}\,{\bf F} + {\bf S}\,{\bf H} &= \begin{bmatrix} 7 \end{bmatrix}
\end{align*}
R.e
{{2, 9}}
S.G
{{-5, 4}}
R.F
{{3}}
S.H
{{4}}
We check with
Mathematica
B.A
\( \displaystyle \begin{pmatrix} -6& 3& 0 \\ 1& 5& 3 \\ -3& 10& 7 \end{pmatrix} \)
■
End of Example 3
Although every nontrivial matrix can be partitioned into a 2 × 2 block matrix, it may be not suitable for matrix multiplication. For instance, two matrices of dimensions 3 × 3 and 3 × 4 cannot be patitioned into submatrices to form 2 × 2 block matrices that are suitable for block multiplication.
Schur complement
Suppose that a
\( (p+q) \times (p+q) \) matrix
M can be partitioned into
four submatrix blocks as
\[
{\bf M} = \begin{bmatrix} {\bf A} & {\bf B} \\ {\bf C} & {\bf D}
\end{bmatrix} ,
\]
where both matrices
A and
D are square matrices of dimensions
\( p\times p \)
and
\( q\times q, \) respectively.
If
A is nonsingular, the
Schur complement of
M with respect to
A is defined as
\[
{\bf M}/{\bf A} = {\bf D} - {\bf C}\,{\bf A}^{-1} {\bf B} .
\]
If
D is nonsingular, the
Schur complement of
M with respect to
D is defined as
\[
{\bf M}/{\bf D} = {\bf A} - {\bf B}\,{\bf D}^{-1} {\bf C} .
\]
Issai Schur
The Schur complement is named after Issai Schur (1875--1941), who introduced it in 1917. The USA mathematician Emilie Virginia Haynsworth (1916--1985) was the first in
1968 paper to call it the Schur complement. The Schur complement is a key tool in the fields of numerical analysis, statistics
and matrix analysis.
Issai Schur was a Russian mathematician (he was born in Mogilev, now Belarus) who worked in Germany for most of his
life. Issai spoke German without a trace of an accent, and nobody even guessed that it was not his first language.
He obtained his doctorate in 1901, became lecturer in 1903 and, after a stay at the University of Bonn,
professor in 1919. As a student of Ferdinand Georg Frobenius (1849--1917), he worked on group representations.
He is perhaps best known today for his result on the existence of the Schur decomposition, which we will discuss later.
In 1922 Schur was elected to the Prussian Academy, proposed by Planck, the secretary of the Academy. From 1933 events
in Germany made Schur's life increasingly difficult. Schur considered himself as a German, not a Jew, but the Nazis
had different opinion. Later in 1935 Schur was dismissed from his chair in Berlin but he continued to work there
suffering great hardship and difficulties. Schur left Germany for Palestine in 1939, broken in mind and body, having
the final humiliation of being forced to find a sponsor to pay the 'Reichs flight tax' to allow him to leave Germany.
Without sufficient funds to live in Palestine he was forced to sell his beloved academic books to the Institute for
Advanced Study in Princeton.
Example 4:
Schur complements.
Example 4: Consider the matrix
\[
{\bf M} = \begin{bmatrix} 1&-2&3&-1&4 \\ 3&1&-2&4&-2 \\ 5&4&-3&1&1 \\ 2&-3&4&2&-3
\end{bmatrix} = \left[ \begin{array}{cc|ccc} 1&-2&3&-1&4 \\ 3&1&-2&4&-2 \\ \hline 5&4&-3&1&1 \\ 2&-3&4&2&-3 \\
0&1&3&-1&2
\end{array} \right]
= \begin{bmatrix} {\bf A} & {\bf B} \\ {\bf C} & {\bf D}
\end{bmatrix} ,
\]
where
\[
{\bf A} = \begin{bmatrix} 1&-2 \\ 3&1 \end{bmatrix} , \quad {\bf B} = \begin{bmatrix} 3&-1&4 \\ -2&4&2 \end{bmatrix} , \quad
{\bf C} = \begin{bmatrix} 5&4 \\ 2&-3 \\ 0&1 \end{bmatrix} , \quad {\bf D} = \begin{bmatrix} -3&1&1 \\ 4&2& -3 \\ 3&-1&2 \end{bmatrix} .
\]
Since both square matrices
A and
D are not singular (
\( \det{\bf A} =7 , \quad \det{\bf D} = -30 \) ),
we can evaluate both Schur complements:
\begin{align*}
{\bf M}/{\bf A} &= {\bf D} - {\bf C}\,{\bf A}^{-1} {\bf B} = \frac{1}{7} \begin{bmatrix} 28&-56&7 \\ -3&21&-67 \\ 32&-14&24 \end{bmatrix} ,
\\
{\bf M}/{\bf D} &= {\bf A} - {\bf B}\,{\bf D}^{-1} {\bf C} = - \frac{1}{3} \begin{bmatrix} 7&19 \\ 42 & 27 \end{bmatrix} .
\end{align*}
We check calculations with
Mathematica:
M = {{1, -2, 3, -1, 4}, {3, 1, -2, 4, -2}, {5, 4, -3, 1, 1}, {2, -3,
4, 2, -3}, {0, 1, 3, -1, 2}}
DD = {{-3, 1, 1}, {4, 2, -3}, {3, -1, 2}}
A = {{1, -2}, {3, 1}}
B = {{3, -1, 4}, {-2, 4, 2}}
CC = {{5, 4}, {2, -3}, {0, 1}}
MA = (DD - CC.Inverse[A].B)*7
Out[6]= {{28, -56, 7}, {-3, 21, -67}, {32, -14, 24}}
MD = (A - B.Inverse[DD].CC)*3
Out[7]= {{-7, -19}, {-42, -27}}
■
End of Example 4
Block Matrix Determinant
For a block matrix
\( {\bf M} = \begin{bmatrix} {\bf A} & {\bf B} \\ {\bf C} & {\bf D}
\end{bmatrix} \) with square matrices
A and
D , we have
\[
\det \left( {\bf M} \right) = \det \left( {\bf A} \right) \left( {\bf M} / {\bf A} \right) \qquad\mbox{and} \qquad \det \left( {\bf M} \right) = \det \left( {\bf D} \right) \left( {\bf M} / {\bf D} \right) ,
\]
provided that inverse matrices exist. The latter follows from the equation
\[
\begin{bmatrix} {\bf A} & {\bf B} \\ {\bf C} & {\bf D}
\end{bmatrix} \begin{bmatrix} {\bf I} & {\bf 0} \\ - {\bf D}^{-1} {\bf C} & {\bf I}
\end{bmatrix} = \begin{bmatrix} {\bf A} - {\bf B}\, {\bf D}^{-1} {\bf C} & {\bf B} \\ {\bf 0} & {\bf D}
\end{bmatrix} ,
\]
where
I is the identity matrix (taken to
be of the appropriate dimension), and square matrix
D is assumed to be nonsingular. Similar formula
is valid for invertible matrix A. The following block diagonalization forms learly display the Schur complement
role. If
A is nonsingular,
\begin{align*}
&\begin{bmatrix} {\bf I} & {\bf 0} \\ -{\bf C}\, {\bf A}^{-1} & {\bf I} \end{bmatrix}
\begin{bmatrix} {\bf A} & {\bf B} \\ {\bf C} & {\bf D} \end{bmatrix}
\begin{bmatrix} {\bf I} & - {\bf A}^{-1} {\bf B} \\ {\bf 0} & {\bf I} \end{bmatrix} =
\begin{bmatrix} {\bf A} & {\bf 0} \\ {\bf 0} & {\bf M} / {\bf A} \end{bmatrix} ,
\\
&\begin{bmatrix} {\bf A} & {\bf B} \\ {\bf C} & {\bf D} \end{bmatrix} =
\begin{bmatrix} {\bf I} & {\bf 0} \\ {\bf C}\, {\bf A}^{-1} & {\bf I} \end{bmatrix}
\begin{bmatrix} {\bf A} & {\bf 0} \\ {\bf 0} & {\bf M} / {\bf A} \end{bmatrix}
\begin{bmatrix} {\bf I} & {\bf A}^{-1} {\bf B} \\ {\bf 0} & {\bf I} \end{bmatrix} .
\end{align*}
If
D is nonsingular, we have
\begin{align*}
&\begin{bmatrix} {\bf I} & - {\bf B}\,{\bf D}^{-1} \\ {\bf 0} & {\bf I} \end{bmatrix}
\begin{bmatrix} {\bf A} & {\bf B} \\ {\bf C} & {\bf D} \end{bmatrix} \begin{bmatrix} {\bf I} & {\bf 0} \\ -{\bf D}^{-1} {\bf C} & {\bf I} \end{bmatrix} =
\begin{bmatrix} {\bf M} / {\bf D} & {\bf 0} \\ {\bf 0} & {\bf D} \end{bmatrix} ,
\\
&\begin{bmatrix} {\bf A} & {\bf B} \\ {\bf C} & {\bf D} \end{bmatrix} = \begin{bmatrix} {\bf I} & {\bf B}\,{\bf D}^{-1} \\ {\bf 0} & {\bf I} \end{bmatrix}
\begin{bmatrix} {\bf M} / {\bf D} & {\bf 0} \\ {\bf 0} & {\bf D} \end{bmatrix}
\begin{bmatrix} {\bf I} & {\bf 0} \\ {\bf D}^{-1} {\bf C} & {\bf I} \end{bmatrix} .
\end{align*}
All of these equations can be directly verified by matrix multiplication.
Example 5:
Determinant of partitioned 5-by-5 matrix.
Example 5: Consider four block matrices:
\[
{\bf A}_1 = \begin{bmatrix} 3&1 \\ 5&2 \end{bmatrix} , \quad {\bf A}_2 = \begin{bmatrix} 1&2&3 \\ 2&3&4 \end{bmatrix} , \quad
{\bf A}_3 = \begin{bmatrix} -1&1 \\ 2&3 \\ 3&4 \end{bmatrix} , \quad {\bf A}_4 = \begin{bmatrix} 2&1&-1 \\ 1&1&1 \\ 2&3&4 \end{bmatrix} .
\]
With
Mathematica , we build 5-by-5 matrix from these blockes:
A1 = {{3, 1}, {5, 2}}
A2 = {{1, 2, 3}, {2, 3, 4}}
A3 = {{-1, 1}, {2, 3}, {3, 4}}
A4 = {{2, 1, -1}, {1, 1, 1}, {2, 3, 4}}
M = ArrayFlatten[{{A1, A2}, {A3, A4}}]
\[
{\bf M} = \begin{bmatrix} {\bf A}_1&{\bf A}_2 \\ {\bf A}_3&{\bf A}_4 \end{bmatrix} = \begin{bmatrix} 3&1&1&2&3 \\ 5&2&2&3&4 \\ -1&1&2&1&-1 \\ 2&3&1&1&1 \\ 3&4&2&3&4 \end{bmatrix} .
\]
Then we calculate Schur complements
\[
{\bf M}/{\bf A} = {\bf A}_4 - {\bf A}_3 {\bf A}_1^{-1} {\bf A}_2 = \begin{bmatrix} 1&3&4 \\ -2&2&6 \\ -2&4&10 \end{bmatrix} , \qquad
{\bf M}/{\bf D} = {\bf A}_1 - {\bf A}_2 {\bf A}_4^{-1} {\bf A}_3 = \begin{bmatrix} 2&0 \\ 2&-2 \end{bmatrix} .
\]
MA = A4 - A3.Inverse[A1].A2
Out[6]= {{1, 3, 4}, {-2, 2, 6}, {-2, 4, 10}}
Det[MA]
Out[7]= 4
MD = A1 - A2.Inverse[A4].A3
Out[8]= {{2, 0}, {2, -2}}
Det[MD]
Out[9]= -4
Therefore,
\[
\det{\bf M} = \det {\bf A}_1 \det \left( {\bf M}/{\bf A} \right) = \det {\bf A}_4 \det \left( {\bf M}/{\bf D} \right) =4 .
\]
■
■
End of Example 5
Block Matrix Inversion
To find the inverse matrix to a block matrix
\( {\bf M} = \begin{bmatrix} {\bf A} & {\bf B} \\ {\bf C} & {\bf D}
\end{bmatrix} , \) we have
\begin{align*}
{\bf M}^{-1} &= \begin{bmatrix} {\bf A} & {\bf B} \\ {\bf C} & {\bf D}
\end{bmatrix}^{-1} = \begin{bmatrix} {\bf A}^{-1} + {\bf A}^{-1} {\bf B} \left( {\bf M}/{\bf A} \right)^{-1} {\bf C} \,{\bf A}^{-1} & - {\bf A}^{-1} {\bf B}\left( {\bf M}/{\bf A} \right)^{-1} \\ - \left( {\bf M}/{\bf A} \right)^{-1} {\bf C} \,{\bf A}^{-1} & \left( {\bf M}/{\bf A} \right)^{-1}
\end{bmatrix} ,
\\ \\
{\bf M}^{-1} &= \begin{bmatrix} {\bf A} & {\bf B} \\ {\bf C} & {\bf D}
\end{bmatrix}^{-1}
= \begin{bmatrix} \left( {\bf M}/{\bf D} \right)^{-1} & - \left( {\bf M}/{\bf D} \right)^{-1} {\bf B} \,{\bf D}^{-1} \\
- {\bf D}^{-1} {\bf C} \left( {\bf M}/{\bf D} \right)^{-1} &
{\bf D}^{-1} + {\bf D}^{-1} {\bf C} \left( {\bf M}/{\bf D} \right)^{-1} {\bf B} \, {\bf D}^{-1}
\end{bmatrix} .
\end{align*}
When
m = n so that
A ,
B ,
C , and
D are all
square, and all of them are nonsingular, one obtains the elegant formula
\[
{\bf M}^{-1} = \begin{bmatrix} {\bf A} & {\bf B} \\ {\bf C} & {\bf D}
\end{bmatrix}^{-1} = \begin{bmatrix} \left( {\bf M}/{\bf D} \right)^{-1} & \left( {\bf M}/{\bf B} \right)^{-1} \\
\left( {\bf M}/{\bf C} \right)^{-1} & \left( {\bf M}/{\bf A} \right)^{-1}
\end{bmatrix} .
\]
In particular,
\[
\begin{bmatrix} {\bf A} & {\bf B} \\ {\bf 0} & {\bf D} \end{bmatrix}^{-1} = \begin{bmatrix} \mathbf{A}^{-1} & {\bf A}^{-1} {\bf B}\, {\bf D}^{-1} \\ {\bf 0} & {\bf D}^{-1} \end{bmatrix} .
\]
Example 6:
Inverse of partitioned matrix.
Example 6: Let us consider a 5-by-5 matrix that is partitioned into four blocks:
\[
{\bf M} = \begin{bmatrix} {\bf A} & {\bf B} \\ {\bf C} & {\bf D} \end{bmatrix} ,
\]
where
\[
{\bf A} = \begin{bmatrix} 3&5 \\ 1&2 \end{bmatrix} , \quad {\bf B} = \begin{bmatrix} 2 &-1&3 \\ -1&1&2 \end{bmatrix} , \quad
{\bf C} = \begin{bmatrix} -3&2 \\ 1&-3 \\ 2&1 \end{bmatrix} , \quad {\bf D} = \begin{bmatrix} 2&4&-6 & \\ 3&-11&18 \\ -2&-8&13 \end{bmatrix} .
\]
Next we calculate Schur's complements:
\begin{align*}
{\bf M}/{\bf A} &= {\bf D} - {\bf C}\,{\bf A}^{-1} {\bf B} = \begin{bmatrix} 39&-25&-24 \\ -27&8&31 \\ -15&2&18\end{bmatrix} ,
\\
{\bf M}/{\bf D} &= {\bf A} - {\bf B}\,{\bf D}^{-1} {\bf C} = \begin{bmatrix} 19/2 & 3 \\ 37& 69 \end{bmatrix} .
\end{align*}
We check calculations with
Mathematica:
A = {{3, 5}, {1, 2}}
B = {{2, -1, 3}, {-1, 1, 2}}
CC = {{-3, 2}, {1, -3}, {2, 1}}
DD= {{2, 4, -6}, {-3, -11, 18}, {-2, -8, 13}}
MA = DD - CC.Inverse[A].B
Out[5]= {{39, -25, -24}, {-27, 8, 31}, {-15, 2, 18}}
MD = A - B.Inverse[DD].CC
Out[6]= {{19/2, 3}, {37, 69}}
Now we calculate components in the inverse matrix (of course, using
Mathematica ):
Inverse[MD]
Out[7]= {{46/363, -(2/363)}, {-(74/1089), 19/1089}}
Inverse[MA]
Out[8]= {{82/1089, 134/363, -(53/99)}, {7/363, 38/121, -(17/33)}, {2/33, 3/11, -(1/3)}}
-Inverse[MD].B.Inverse[DD]
Out[9]= {{-(109/363), -(4/121), -(4/33)}, {128/1089, -(83/363), 38/99}}
-Inverse[DD].CC.Inverse[MD]
Inverse[DD] + Inverse[DD].CC.Inverse[MD].B.Inverse[DD]
Inverse[A] + Inverse[A].B.Inverse[MA].CC.Inverse[A]
-Inverse[MA].CC.Inverse[A]
-Inverse[A].B.Inverse[MA]
Out[10]= {{395/1089, -(175/1089)}, {47/363, 140/363}, {4/33, 7/33}}
Out[11]= {{82/1089, 134/363, -(53/99)}, {7/363, 38/121, -(17/33)}, {2/33, 3/11, -(1/3)}}
Out[12]= {{46/363, -(2/363)}, {-(74/1089), 19/1089}}
Out[13]= {{395/1089, -(175/1089)}, {47/363, 140/363}, {4/33, 7/33}}
Out[14]= {{-(109/363), -(4/121), -(4/33)}, {128/1089, -(83/363), 38/99}}
Finally, we check the answer:
M = {{3, 5, 2, -1, 3}, {1, 2, -1, 1, 2}, {-3, 2, 2, 4, -6}, {1, -3, 3, -11, 18}, {2, 1, -2, -8, 13}}
Inverse[M]*3501
Out[16]= {{522, -54, -1035, -36, -540}, {304, -179, 524, -249,
544}, {395, -175, 82, 402, -583}, {-291, 1680, -87,
342, -705}, {-222, 1029, 78, 297, -213}}
Therefore,
\[
{\bf M}^{-1} = \frac{1}{3501} \begin{bmatrix} 522&-54&-1035&-36&540 \\ 304&-179&524&-249&544
\\ 395&-175&82&402&-583 \\ -291&1680& -87&342&-705 \\ -222&1029&78&297&-213 \end{bmatrix} . \qquad ■
\]
■
End of Example 6
Block Diagonal Matrices
A block diagonal matrix is a block matrix that is a square matrix, and having main diagonal blocks square matrices,
such that the off-diagonal blocks are zero matrices. A block diagonal matrix
M has the form
\[
{\bf M} = \begin{bmatrix} {\bf A}_1 & {\bf 0} & \cdots & {\bf 0} \\
{\bf 0} & {\bf A}_2 & \cdots & {\bf 0} \\
\vdots & \vdots& \ddots & \vdots \\
{\bf 0} & {\bf 0} & \cdots & {\bf A}_n
\end{bmatrix} ,
\]
where
A k is a square matrix; in other words, it is the direct sum of
A 1 , … ,
A n :
\( {\bf M} = {\bf A}_1 \oplus {\bf A}_2 \oplus
\cdots \oplus {\bf A}_n . \) It can also be indicated as diag(
\( {\bf A}_1 , {\bf A}_2 , \ldots , {\bf A}_n \) ).
Any square matrix can trivially be considered a block diagonal matrix with only one block.
For the determinant and trace, the following properties hold
\begin{align*}
\det \left( {\bf M} \right) &= \det {\bf A}_1 \times \det {\bf A}_2 \times \cdots \times \det {\bf A}_n ,
\\
\mbox{tr}\left( {\bf M} \right) &= \mbox{tr} \left( {\bf A}_1 \right) + \mbox{tr} \left( {\bf A}_2 \right) + \cdots +
\mbox{tr} \left( {\bf A}_n \right) .
\end{align*}
The inverse of a block diagonal matrix is another block diagonal matrix, composed of the inverse of each block, as follows:
\[
{\bf M}^{-1} = \begin{bmatrix} {\bf A}_1 & {\bf 0} & \cdots & {\bf 0} \\
{\bf 0} & {\bf A}_2 & \cdots & {\bf 0} \\
\vdots & \vdots& \ddots & \vdots \\
{\bf 0} & {\bf 0} & \cdots & {\bf A}_n
\end{bmatrix}^{-1} = \begin{bmatrix} {\bf A}_1^{-1} & {\bf 0} & \cdots & {\bf 0} \\
{\bf 0} & {\bf A}_2^{-1} & \cdots & {\bf 0} \\
\vdots & \vdots& \ddots & \vdots \\
{\bf 0} & {\bf 0} & \cdots & {\bf A}_n^{-1}
\end{bmatrix} .
\]
Example 7:
Block diagonal matrix. n
Example 7: Suppose we are given two square matrices:
\[
{\bf A}_1 = \begin{bmatrix} 3&1 \\ 5&2 \end{bmatrix} , \quad {\bf A}_4 = \begin{bmatrix} 2&1&-1 \\ 1&1&1 \\ 2&3&4 \end{bmatrix} .
\]
With
Mathematica , we build 5-by-5 block diagonal matrix from these two blockes:
A1 = {{3, 1}, {5, 2}}
A4 = {{2, 1, -1}, {1, 1, 1}, {2, 3, 4}}
zero23 = ConstantArray[0, {2, 3}]
zero32 = ConstantArray[0, {3, 2}]
A = ArrayFlatten[{{A1, zero23}, {zero32, A4}}]
\[
{\bf A} = \begin{bmatrix} {\bf A}_1&{\bf 0} \\ {\bf 0}&{\bf A}_4 \end{bmatrix} = \begin{bmatrix} 3&1&0&0&0 \\ 5&2&0&0&0 \\ 0&0&2&1&-1 \\ 0&0&1&1&1 \\ 0&0&2&3&4 \end{bmatrix} .
\]
Then we calculate its determinant and determinants of corresponding blocks:
Det[A]
Out[1]= -1
Det[A1]
Out[1]= -1
Det[A4]
Out[1]= 1
which is in accordance with the formula
\( \det{\bf A} = \det {\bf A}_1 \det {\bf A}_2 . \)
Finally, we calculate its inverse:
Inverse[A]
Out[4]= {{2, -1, 0, 0, 0}, {-5, 3, 0, 0, 0}, {0, 0, -1, 7, -2}, {0, 0, 2, -10, 3}, {0, 0, -1, 4, -1}}
Inverse[A1]
Out[5]= {{2, -1}, {-5, 3}}
Inverse[A4]
Out[6]= {{-1, 7, -2}, {2, -10, 3}, {-1, 4, -1}}
Therefore,
\[
{\bf A}^{-1} = \begin{bmatrix} 3&1&0&0&0 \\ 5&2&0&0&0 \\ 0&0&2&1&-1 \\ 0&0&1&1&1 \\ 0&0&2&3&4 \end{bmatrix}^{-1}
= \begin{bmatrix} 2&-1&0&0&0 \\ -5&3&0&0&0 \\ 0&0&-1&7&-2 \\ 0&0&2&-10&3 \\ 0&0&-1&4&-1 \end{bmatrix} .
\]
■
End of Example 7
Block Tridiagonal Matrices
A block
tridiagonal matrix is another special block matrix, which is just like the block
diagonal matrix , having
square matrices (blocks) in the lower diagonal, main diagonal and upper diagonal, with all other
blocks being zero matrices. It is essentially a tridiagonal matrix but has submatrices in places of scalars.
A block tridiagonal matrix
M has the form
\[
{\bf M} = \begin{bmatrix} {\bf B}_1 & {\bf C}_1 & {\bf 0} &&& \cdots & {\bf 0}
\\
{\bf A}_2 & {\bf B}_2 & {\bf C}_2 &&& \cdots & {\bf 0}
\\
\vdots& \ddots & \ddots & \ddots &&& \vdots
\\
&& {\bf A}_k & {\bf B}_k & {\bf C}_k & & {\bf 0}
\\
&&& \ddots & \ddots & \ddots &&
\\
&&&&{\bf A}_{n-1}&{\bf B}_{n-1} & {\bf C}_{n-1}
\\
{\bf 0}&&\cdots&&&{\bf A}_n&{\bf B}_n
\end{bmatrix} ,
\]
where A k , B k and C k are square
sub-matrices of the lower, main and upper diagonal respectively.
Example 8:
Block tridiagonal matrix. n
Example 8: Suppose we are given two square matrices:
■
End of Example 8
Direct Sum
For any arbitrary matrices
\( {\bf A} = [a_{i,j} ] \) (of size
\( n \times m \) )
and
\( {\bf B} = [b_{i,j}] \) (of size
\( p \times q \) ),
we have the
direct sum of
A and
B , denoted by
A ⊕
B and defined as
\[
{\bf A} \oplus {\bf B} = \begin{bmatrix} a_{11} & \cdots & a_{1m} & 0 & \cdots & 0 \\
\vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\
a_{n,1} & \cdots & a_{nm} & 0 & \cdots & 0 \\
0& \cdots & 0 & b_{11} & \cdots & b_{1q} \\
\vdots & \ddots & \vdots & \vdots & \ddots & \vdots \\
0& \cdots & 0 & b_{p1} & \cdots & b_{pq}
\end{bmatrix} .
\]
Example 9:
??????
Example 9: Suppose we are given two square matrices:
============== Roger:
■
End of Example 9
Kronecker Product
Let
A be
n -by-
m matrix and
B be
p -by-
q matrix, then
their
Kronecker product or
direct product , denoted by
\( {\bf A}\otimes {\bf B} ,\)
is the
\( pn \times mq \) block matrix:
\[
{\bf A} \otimes {\bf B} = \begin{bmatrix} a_{11} {\bf B} & \cdots & a_{1m} {\bf B} \\
\vdots& \ddots & \vdots \\
a_{n1} {\bf B} & \cdots & a_{nm} {\bf B} \end{bmatrix} .
\]
More explicitly:
\[
{\bf A} \otimes {\bf B} = \begin{bmatrix} a_{11} b_{11} & a_{11} b_{12} & \cdots & a_{1m} b_{1q} & \cdots & \cdots &
a_{1m} b_{11} & a_{1n} b_{12} & \cdots & a_{1m} b_{1q} \\
a_{11} b_{21} & a_{11} b_{21} & \cdots & a_{11} b_{2q} & \cdots & \cdots & a_{1m} b_{21} & a_{1m} b_{22} & \cdots & a_{1m} b_{2q}
\\
\vdots & \vdots & \ddots & \vdots & && \vdots & \vdots & \ddots & \vdots
\\
a_{11} b_{p1} & a_{11} b_{p2} & \cdots & a_{11} b_{pq} & \cdots & \cdots & a_{1m} b_{p1} & a_{1m} b_{p2} & \cdots & a_{1m} b_{pq}
\\
\vdots & \vdots & & \vdots & \ddots && \vdots & \vdots & & \vdots
\\
\vdots & \vdots & & \vdots & &\ddots & \vdots & \vdots & & \vdots
\\
a_{n1} b_{11} & a_{n1} b_{12} & \cdots & a_{n1} b_{1q} & \cdots & \cdots & a_{nm} b_{11} & a_{nm} b_{12} & \cdots & a_{nm} b_{1q}
\\
a_{n1} b_{21} & a_{n1} b_{22} & \cdots & a_{n1} b_{2q} & \cdots & \cdots & a_{nm} b_{21} & a_{nm} b_{22} & \cdots & a_{nm} b_{2q}
\\
\vdots & \vdots & \ddots & \vdots & && \vdots & \vdots & \ddots & \vdots
\\
a_{n1} b_{p1} & a_{n1} b_{p2} & \cdots & a_{n1} b_{pq} & \cdots & \cdots & a_{nm} b_{p1} & a_{nm} b_{p2} & \cdots & a_{nm} b_{pq}
\end{bmatrix} .
\]
Leopold Kronecker
The Kronecker product is named after the German mathematician (of Jewish desent) Leopold Kronecker (1823--1891). Leopold was a student and life-long friend of Ernst Kummer (1810--1893).
There is
little evidence that he was the first to define and use it. Indeed, the Kronecker product should be called the
Zehfuss product because Johann Georg Zehfuss (1832--1901) published a paper in 1858 (Zeit. fur Math und Physik, 3, 1858, 298--301),
in which he described the matrix operation we now know as the Kronecker product.
Example 10:
Kronecker product of two matrices
Example 10:
Suppose we are given two rectangular matrices:
\[
{\bf A} = \begin{bmatrix} 2&1 \\ 1&2 \\ 3&2 \end{bmatrix} , \qquad {\bf B} = \begin{bmatrix} 1&-1&1 \\ 2&-3&1 \end{bmatrix} .
\]
Then their Kronecker product becomes
\begin{align*}
\mathbf{A} \otimes \mathbf{B} &= \begin{bmatrix} 2&1 \\ 1&2 \\ 3&2 \end{bmatrix} \otimes \begin{bmatrix} 1&-1&1 \\ 2&-3&1 \end{bmatrix}
\\
&= \begin{bmatrix} 2\cdot \begin{bmatrix} 1&-1&1 \\ 2&-3&1 \end{bmatrix} &1 \cdot \begin{bmatrix} 1&-1&1 \\ 2&-3&1 \end{bmatrix} \\
1 \cdot \begin{bmatrix} 1&-1&1 \\ 2&-3&1 \end{bmatrix} & 2\cdot \begin{bmatrix} 1&-1&1 \\ 2&-3&1 \end{bmatrix}
\\
3 \cdot \begin{bmatrix} 1&-1&1 \\ 2&-3&1 \end{bmatrix} &2 \cdot \begin{bmatrix} 1&-1&1 \\ 2&-3&1 \end{bmatrix}\end{bmatrix}
\\
&= \begin{bmatrix} \begin{bmatrix} 2&-2&2 \\ 4&-6&2 \end{bmatrix} & \begin{bmatrix} 1&-1&1 \\ 2&-3&1 \end{bmatrix} \\
\begin{bmatrix} 1&-1&1 \\ 2&-3&1 \end{bmatrix} & \begin{bmatrix} 2&-2&2 \\ 4&-6&2 \end{bmatrix} \\
\begin{bmatrix} 3&-3&3 \\ 6&-9&3 \end{bmatrix} & \begin{bmatrix} 2&-2&2 \\ 4&-6&2 \end{bmatrix}
\end{bmatrix}
\\
&= \begin{bmatrix} 2&-2&2 & 1& -1& 1 \\ 4&-6&2 & 2&-3&2
\\
1&-1&1 & 2&-2&2 \\
2&-3&1 & 4&-6&2
\\
3&-3&3 &2&-2&2 \\ 6&-9&3 &4&-6&2
\end{bmatrix} .
\end{align*}
============== Roger:
■
End of Example 10
Subsection:
Exercises
Show that the block matrix \( \displaystyle \begin{bmatrix} \mathbf{I} & \mathbf{A} \\ \mathbf{0} & \mathbf{I} \end{bmatrix} \) is invertible for any square matrix A and find its inverse.
Assume that the matrices are partitioned conformably for block multiplication. Compute the products shown below.
\[
(a) \quad \begin{bmatrix} \mathbf{E} & \mathbf{0} \\ \mathbf{0} & \mathbf{F} \end{bmatrix} \begin{bmatrix} \mathbf{A} & \mathbf{B} \\ \mathbf{C} & \mathbf{D} \end{bmatrix} , \qquad (b) \quad \begin{bmatrix} \mathbf{I} & \mathbf{0} \\ \mathbf{E} & \mathbf{I} \end{bmatrix} \begin{bmatrix} \mathbf{A} & \mathbf{B} \\ \mathbf{C} & \mathbf{D} \end{bmatrix}
\]
\[
(c) \quad \begin{bmatrix} \mathbf{0} & \mathbf{I} \\ \mathbf{I} & \mathbf{0} \end{bmatrix} \begin{bmatrix} \mathbf{A} & \mathbf{B} \\ \mathbf{C} & \mathbf{D} \end{bmatrix} , \qquad (d) \quad \begin{bmatrix} \mathbf{I} & \mathbf{0} \\ -\mathbf{E} & \mathbf{I} \end{bmatrix} \cdot \begin{bmatrix} \mathbf{A} & \mathbf{B} \\ \mathbf{C} & \mathbf{D} \end{bmatrix} .
\]
Find formulas for X , Y , and Z in terms of A , B , and C , and justify your calculations.
\[
\begin{bmatrix} \mathbf{A} & \mathbf{B} \\ \mathbf{0} & \mathbf{I} \end{bmatrix} \begin{bmatrix} \mathbf{X} & \mathbf{Y} & \mathbf{Z} \\ \mathbf{0} & \mathbf{0} & \mathbf{I} \end{bmatrix} = \begin{bmatrix} \mathbf{I} & \mathbf{0} & \mathbf{0} \\ \mathbf{0} & \mathbf{0} & \mathbf{I} \end{bmatrix} ,
\]
\[
\begin{bmatrix} \mathbf{A} & \mathbf{B} \\ \mathbf{C} & \mathbf{D} \end{bmatrix} \begin{bmatrix} \mathbf{I} & \mathbf{0} \\ \mathbf{X} & \mathbf{Y} \end{bmatrix} = \begin{bmatrix} \mathbf{0} & \mathbf{I} \\ \mathbf{Z} & \mathbf{0} \end{bmatrix} ,
\]
\[
\begin{bmatrix} \mathbf{X} & \mathbf{0} & {\bf 0} \\ \mathbf{Y} & \mathbf{0} & {\bf I} \end{bmatrix} \begin{bmatrix} \mathbf{A} & \mathbf{Z} \\ \mathbf{0} & \mathbf{0} \\ \mathbf{B} & \mathbf{I} \end{bmatrix} = \begin{bmatrix} \mathbf{I} & \mathbf{0} \\ \mathbf{0} & \mathbf{I} \end{bmatrix} ,
\]
\[
\begin{bmatrix} \mathbf{X} & \mathbf{0} \\ \mathbf{Y} & \mathbf{Z} \end{bmatrix} \begin{bmatrix} \mathbf{A} & \mathbf{0} \\ \mathbf{B} & \mathbf{C} \end{bmatrix} = \begin{bmatrix} \mathbf{I} & \mathbf{0} \\ \mathbf{0} & \mathbf{I} \end{bmatrix} .
\]
References
Axier, S., Linear Algebra Done Right. Undergraduate Texts in Mathematics (3rd ed.). Springer. 2015, ISBN 978-3-319-11079-0.
Beezer, R.A., A First Course in Linear Algebra , 2017.
Garcia, S.R. and Horn, R.A., Block matrices in Linear Algebra .
Schur, I., Potenzreihen
im Innern des Einheitskreises,
Journal für die reine und angewandte Mathematik, 1917, pp. 205–232.