Polar decomposition
Polar decomposition in 2D
By the polar decomposition theorem, every nonsingular real square matrix M can be factored uniquely into the product of an orthogonal and a positive definite real matrix:Instead of giving the lengthy and rather tedious arithmetic sug- gested by the constructive proof for the polar decomposition theorem here, we need only verify that V and P as given above are in fact the polar factors of any nonsingular \[ \mathbf{M} = \begin{bmatrix} a & b \\ c& d \end{bmatrix} \in \mathbb{R}^{2\times 2} . \] Clearly P is positive definite as the sum of positive definite matrices, and \[ \mathbf{V}^{\mathrm T} \mathbf{V} = \left\vert \mathbf{M} + \vert \det\mathbf{M} \vert \left( \mathbf{M}^{\mathrm T} \right)^{-1} \right\vert^{-1} . \] \[ \times \left[ \mathbf{M}^{\mathrm T} \mathbf{M} + 2\left\vert \det\mathbf{M} \right\vert \mathbf{I} + \left( \det \mathbf{M}^2 \right) \left( \mathbf{M}^{\mathrm T} \mathbf{M} \right) \right] . \] Now \[ \mathbf{M}^{\mathrm T} \mathbf{M} = \begin{bmatrix} a^2 + c^2 & ab + cd \\ ab + cd & b^2 + d^2 \end{bmatrix} , \] and by Cramer’s rule \[ \left( \mathbf{M}^{\mathrm T} \mathbf{M} \right)^{-1} = \frac{1}{\det\mathbf{M}^2} \,\begin{bmatrix} b^2 + d^2 & - \left( ab + cd \right) \\ - \left( ab + cd \right) & a^2 + c^2 \end{bmatrix} . \] This, with \( \displaystyle \quad \beta = \left\vert \det \left( \mathbf{M} + \left\vert \det\mathbf{M} \right\vert \left( \mathbf{M}^{\mathrm T} \right)^{-1} \right) \right\vert^{1/2} , \quad \) we have \[ \mathbf{V}^{\mathrm T} \mathbf{V} = \frac{1}{\beta^2} \begin{bmatrix} a^2 + b^2 + c^2 + d^2 + 2 \left\vert \det \mathbf{M} \right\vert & 0 \\ 0 & a^2 + b^2 + c^2 + d^2 + 2 \left\vert \det \mathbf{M} \right\vert \end{bmatrix} . \] Since \[ \left( \mathbf{M}^{\mathrm T} \right)^{-1} = \frac{1}{\det\mathbf{M}} \begin{bmatrix} d & -c \\ -b & a \end{bmatrix} , \] we have \[ \left\vert \det\mathbf{M} \right\vert \left( \mathbf{M}^{\mathrm T} \right)^{-1} = \pm \begin{bmatrix} d & -c \\ -b & a \end{bmatrix} , \] the sign depending on whether det M is positive or negative. If det(M) > 0, then \begin{align*} \det \left[ \det\mathbf{M} + \left( \det\mathbf{M} \right) \left( \mathbf{M}^{\mathrm T} \right)^{-1} \right] &= \det \begin{bmatrix} a+d & b-c \\ c-b & d+a \end{bmatrix} \\ &= \left( a + d \right)^2 + \left( b-c \right)^2 \\ &= a^2 + b^2 + c^2 + d^2 + 2\,\det\mathbf{M} \\ &= \beta^2 > 0 . \end{align*} If det(M) < 0, then \begin{align*} \beta^2 &= \left\vert \det \left( \mathbf{M} + \left\vert \det\mathbf{M} \right\vert \left( \mathbf{M}^{\mathrm T} \right)^{-1} \right) \right\vert \\ &= \left\vert \det \begin{bmatrix} a-d & b+c \\ c+b & d-a \end{bmatrix} \right\vert \\ &= \left\vert - \left( a-d \right)^2 - \left( b+c \right)^2 \right\vert \\ &= a^2 + b^2 + c^2 + d^2 + 2 \left\vert \det\mathbf{M} \right\vert . \end{align*} Thus, in either case VTV = I.
It remains to show that M = V P. Let us take the case detM < 0 for example. Then \[ \mathbf{V} = \frac{1}{\beta} \begin{bmatrix} a-d & b+c \\ c+b & d-a \end{bmatrix} \] and \[ \mathbf{P} = \frac{1}{\beta} \begin{bmatrix} a^2 + c^2 - \left( ad - bc \right) & ab + cd \\ ab + cd & b^2 + d^2 - \left( ad - bc \right) \end{bmatrix} . \] So \begin{align*} {\bf V}\,{\bf P} = \frac{1}{\beta^2} \begin{bmatrix} a-d & b+c \\ c+b & d-a \end{bmatrix} \cdot \begin{bmatrix} a^2 + c^2 - \left( ad - bc \right) & ab + cd \\ ab + cd & b^2 + d^2 - \left( ad - bc \right) \end{bmatrix} \\ &= \frac{1}{\beta^2} \begin{bmatrix} a_{1,1} & a_{1,2} \\ a_{2,1} & a_{2,2} \end{bmatrix} , \end{align*} where \begin{align*} a_{1,1} &= a \left[ a^2 + c^2 - \left( ad -bc \right) \right] - da^2 + ad^2 -bcd + a b^2 + bcd + abs + c^2 d \\ &= a \left[ a^2 + c^2 - \left( ad -bc \right) - ad + d^2 + b^2 + bc\right] \\ &= a \left[ a^2 + b^2 + c^2 + d^2 -2 \left( ad - bc \right) \right] = a\,\beta^2 . \end{align*} Similarly, 𝑎1,2 = bβ², 𝑎2,1 = cβ², and 𝑎2,2 = dβ². Therefore, \[ \mathbf{M} = \begin{bmatrix} a & b \\ c & d \end{bmatrix} = {\bf V}\,{\bf P} . \] The case detM > 0 can be verified analogously.
Example 1: ■
in case detA < 0: 𝑎 − d and b + c form a Pythagorean pair of integers, and
in case detA > 0: 𝑎 + d and b − c do.
Example 2: ■
Example 3: ■
Example 4: ■