Preface


This section is devoted to inetgrating factors as functions of dependent variable. coordinates.

Return to computing page for the first course APMA0330
Return to computing page for the second course APMA0340
Return to Mathematica tutorial for the second course APMA0340
Return to the main page for the course APMA0330
Return to the main page for the course APMA0340
Return to Part II of the course APMA0330

Integrating factors as functions of dependent variable


Cycloid

The Parametrization

cycloid[a_, b_][t_] := {a*t - b*Sin[t], a - b*Cos[t]}
Manipulate[
ParametricPlot[
cycloid[a, b][t] // Evaluate, {t, -\[Pi]/2, 5*\[Pi]/2}], {a, 1, 5}, {b, 1, 5}]

 

Cycloid[\[Rho]_, \[Tau]_] := {\[Rho]*\[Tau] - \[Rho]^2* Sin[\[Tau]/\[Rho]], \[Rho]^2*(1 - Cos[\[Tau]/\[Rho]])};
PolarPlot[Cycloid[1.5,theta],{theta, 0, 4*Pi}]

 

Example:
PolarPlot[{Exp[Cos[x]] - 2*Cos[4*x], x}, {x, 0, 2*Pi}]

 

Return to Mathematica page

Return to the main page (APMA0330)
Return to the Part 1 (Plotting)
Return to the Part 2 (First Order ODEs)
Return to the Part 3 (Numerical Methods)
Return to the Part 4 (Second and Higher Order ODEs)
Return to the Part 5 (Series and Recurrences)
Return to the Part 6 (Laplace Transform)
Return to the Part 7 (Boundary Value Problems)