Preface
This section is devoted to inetgrating factors as functions of dependent variable. coordinates.
Return to computing page for the second course APMA0340
Return to Mathematica tutorial for the second course APMA0340
Return to the main page for the course APMA0330
Return to the main page for the course APMA0340
Return to Part II of the course APMA0330
Glossary
Integrating factors as functions of dependent variable
Cycloid
The Parametrization
cycloid[a_, b_][t_] := {a*t - b*Sin[t], a - b*Cos[t]}
Manipulate[
ParametricPlot[
cycloid[a, b][t] // Evaluate, {t, -\[Pi]/2, 5*\[Pi]/2}], {a, 1, 5}, {b, 1, 5}]
Manipulate[
ParametricPlot[
cycloid[a, b][t] // Evaluate, {t, -\[Pi]/2, 5*\[Pi]/2}], {a, 1, 5}, {b, 1, 5}]
Cycloid[\[Rho]_, \[Tau]_] := {\[Rho]*\[Tau] - \[Rho]^2*
Sin[\[Tau]/\[Rho]], \[Rho]^2*(1 - Cos[\[Tau]/\[Rho]])};
PolarPlot[Cycloid[1.5,theta],{theta, 0, 4*Pi}]
PolarPlot[Cycloid[1.5,theta],{theta, 0, 4*Pi}]
Example:
PolarPlot[{Exp[Cos[x]] - 2*Cos[4*x], x}, {x, 0, 2*Pi}]
■
Return to Mathematica page
Return to the main page (APMA0330)
Return to the Part 1 (Plotting)
Return to the Part 2 (First Order ODEs)
Return to the Part 3 (Numerical Methods)
Return to the Part 4 (Second and Higher Order ODEs)
Return to the Part 5 (Series and Recurrences)
Return to the Part 6 (Laplace Transform)
Return to the Part 7 (Boundary Value Problems)