Preface


Stiff

Return to computing page for the first course APMA0330
Return to computing page for the second course APMA0340
Return to Mathematica tutorial for the first course APMA0330
Return to Mathematica tutorial for the second course APMA0340
Return to the main page for the first course APMA0330
Return to the main page for the second course APMA0340
Return to Part VI of the course APMA0340
Introduction to Linear Algebra with Mathematica

Stiff equations


Stiff

 

Example: Consider the initial value problem

\[ \begin{cases} \dot{x} &= 520\,x -2605\,y \\ \dot{y} &= 304\,x -1521\, y ; \end{cases}\qquad \begin{bmatrix} x(0) \\ y(0) \end{bmatrix} = \begin{bmatrix} 1 \\ -1 \end{bmatrix} \]
The true solution is
\begin{align*} x(t) &= \frac{1}{333} \left[ 1375\, e^{-t} - 1042\, e^{-1000\,t} \right] , \\ y(t) &= \frac{1}{333} \left[ 275\,e^{-t} -608\, e^{-1000\,t} \right] . \end{align*}
DSolve[{x'[t] == 520*x[t] - 2605*y[t], y'[t] == 304*x[t] - 1521*y[t], x[0] == 1, y[0] == -1}, {x, y}, t]
{{x -> Function[{t}, 1/333 E^(-1000 t) (-1042 + 1375 E^(999 t))], y -> Function[{t}, 1/333 E^(-1000 t) (-608 + 275 E^(999 t))]}}
The above system of differential equations can be reduced to one single equation:
\[ x'' (t) + 1001\, x' (t) + 1000\,x(t) = 0, \qquad x(0) =1, \quad x' (0) = 3125. \]
   ■

 

  1. E. Hairer and G. Wanner. Solving Ordinary Differential Equations II: Stiff and Differential-Algebraic Problems. Springer-Verlag, 1991.
  2. Abdul-Majid Wazwaz, Partial Differential Equations and Solitary Waves Theory, Nonlinear Physical Science. Springer, Berlin, Heidelberg, 2009. https://doi.org/10.1007/978-3-642-00251-9_5

 

Return to Mathematica page
Return to the main page (APMA0340)
Return to the Part 1 Matrix Algebra
Return to the Part 2 Linear Systems of Ordinary Differential Equations
Return to the Part 3 Non-linear Systems of Ordinary Differential Equations
Return to the Part 4 Numerical Methods
Return to the Part 5 Fourier Series
Return to the Part 6 Partial Differential Equations
Return to the Part 7 Special Functions