An elliptic function is a function meromorphic on the complec plane ℂ that is periodic in two directions. Elliptic integrals were first encountered by John Wallis around 1655. Historically, elliptic functions were first discovered by Niels Henrik Abel (1802--1829) as inverse functions of elliptic integrals. However, their theory was developed by the German mathematician Carl Gustav Jacob Jacobi (1804--1851), who called December 23, 1751 the birthday of elliptic functions, because on that day Euler (1017--1783) was asked his opinion of a paper by Fagnano (1715--1797) on arcs of lemniscates.
There are known two standard forms of elliptic functions: Jacobi elliptic functions and Weierstrass elliptic functions. Jacobi elliptic functions arise as solutions to differential equations of the form
Return to computing page for the first course APMA0330
Return to computing page for the second course APMA0340
Return to Mathematica tutorial for the first course APMA0330
Return to Mathematica tutorial for the second course APMA0340
Return to the main page for the first course APMA0330
Return to the main page for the second course APMA0340
Return to Part VII of the course APMA0340
Introduction to Linear Algebra with Mathematica
There are several types of elliptic functions including the Weierstrass elliptic functions as well as related theta functions but the most common elliptic functions are the Jacobian elliptic functions, based on the inverses of the three types of elliptic integrals.
There are twelve Jacobi elliptic functions denoted by pq(x,m), where p and q are any of the letters c, s, n, and d. (Functions of the form pp(x,m) are trivially set to unity for notational completeness). The variable x is the argument, and m is the parameter, both of which may be complex. The first variable might be given in terms of the amplitude φ, or more commonly, in terms of x given below. The second variable might be given in terms of the parameter m, or as the elliptic modulus k, where k² = m, or in terms of the modular angle α, where m = sin² α. The complements of k and m are defined as m' =1-m and \( k' = \sqrt {1-k^2} = \sqrt{1-m} . \) These four terms are used below without comment to simplify various expressions.
sn is pronounced roughly as “ess-en”. (Try saying three times fast: “ess-en u is the sine of the amplitude of u”). A plot of ()sn uvs. u looks very similar to a sine wave as seen in Figure
Airy functions are solutions to the Airy differential equation
y''[x] - x y[x] == 0
There are two linearly independent solutions, called by Mathematica as
AiryAi[x] and AiryBi[x].
Example:
Lemniscate of Bernoulli is a special case of Cassinian oval. That is, the locus of points P, such that distance[P,F1] * distance[P,F2] == (distance[F1,F2]/2)^2, where F1, F2 are fixed points called foci. It is analogous to the definition of ellipse, where sum of two distances is replace by product.
The principal difference between the Jacobiand the Weierstrass elliptic integrals is in the number of poles in each fundamentalcell. While the Jacobi elliptic functions has two simple poles per cell and can beconsiders as a solution to the differential equation
Theta functions are the elliptic analogs of the exponential function and are typically written as θ𝑎(u, q), where 𝑎 ranges from 1 to 4 to represent the fours variations of the theta function, u is the argument of the function and q is the Nome, given as
\[
q = e^{{\bf j}\pi t} = e^{\pi\, K' /K} ,
\]
where
\[
t = - {\bf j}\, \frac{K' (k)}{K(k)} .
\]
Example:
▣
Armitage, J. V. and Eberlein, W. F., Elliptic Functions, Cambridge University Press, 2006
Weisstein, E.W., Books about Elliptic Integrals, http://www.ericweisstein.com/encyclopedias/books/EllipticIntegrals.html.
Whittaker, E.T. and Watson, G.N. A Course in Modern Analysis, 4th ed., Cam-bridge University Press, Cambridge, England, 1990.
Return to Mathematica page)
Return to the main page (APMA0340)
Return to the Part 1 Matrix Algebra
Return to the Part 2 Linear Systems of Ordinary Differential Equations
Return to the Part 3 Non-linear Systems of Ordinary Differential Equations
Return to the Part 4 Numerical Methods
Return to the Part 5 Fourier Series
Return to the Part 6 Partial Differential Equations
Return to the Part 7 Special Functions