Preface


This section gives an introduction to modelling electric circuits.

Return to computing page for the first course APMA0330
Return to computing page for the second course APMA0340
Return to Mathematica tutorial for the first course APMA0330
Return to Mathematica tutorial for the second course APMA0340
Return to the main page for the first course APMA0330
Return to the main page for the second course APMA0340
Return to Part VI of the course APMA0340
Introduction to Linear Algebra with Mathematica

Electric circuits


Example: Figure shows an electric circuit containing a capacitor C, a resistor R, and an inductor L, in parallel. Recall Kirchhoff's law:

fbas[x_] := x/L /; 0 <= x < L
fbas[x_] := -(x - 2*L)/L /; L <= x < 3*L
fbas[x_] := (x - 4*L)/L /; 3*L <= x < 4*L
L = 1/2;
f[x_] := fbas[Mod[x, 4*L, -1/16^2*L]]
SetOptions[Plot, ImageSize -> 300];
resistor =
Plot[f[x], {x, -10*L, 10*L}, PlotRange -> {-1.2, 1.2},
PlotStyle -> Thickness[0.008], PlotLabel -> "R", Ticks -> None, Axes -> False]
coil = ParametricPlot[{1*Cos[t*3 + Pi] + 1.5*t - 9,
2*Sin[t*3] - 8}, {t, 0, 5*Pi}, PlotLabel -> "L", Ticks -> None, Axes -> False, ImageSize -> Tiny]
l1 = Graphics[Line[{{-0.1, 6.7}, {-0.1, 5.3}}]]
l2 = Graphics[Line[{{0.1, 6.7}, {0.1, 5.3}}]]
l3 = Graphics[Line[{{-10, -8}, {-12, -8}, {-12, 0}, {-5, 0}}]]
l4 = Graphics[Line[{{-12, 0}, {-12.0, 6}, {-0.1, 6}}]]
l5 = Graphics[Line[{{0.1, 6}, {18, 6}, {18, -8}, {15.5619, -8}}]]
l6 = Graphics[Line[{{5, 0}, {18, 0}}]]
textC = Graphics[Text[Style["C", FontSize -> 14, Blue], {0, 7.5}]]
textR = Graphics[Text[Style["R", FontSize -> 14, Green], {0, 2.2}]]
textL = Graphics[Text[Style["L", FontSize -> 14, Red], {0.5, -5.2}]]
Show[l1, l2, l3, l4, l5, l6, resistor, Graphics[coil, PlotRegion -> {{-1, 1}, {-1, 1}}], textR, textC, textL]

 

Return to Mathematica page

Return to the main page (APMA0340)
Return to the Part 1 Matrix Algebra
Return to the Part 2 Linear Systems of Ordinary Differential Equations
Return to the Part 3 Non-linear Systems of Ordinary Differential Equations
Return to the Part 4 Numerical Methods
Return to the Part 5 Fourier Series
Return to the Part 6 Partial Differential Equations
Return to the Part 7 Special Functions