Preface
In this section, we show that Bessel's functions
\[
\phi_n (x) = J_{\nu} \left( \mu_n \frac{x}{\ell} \right) \qquad (n=1,2,3,\ldots )
\]
are orthogonal when parameters μn are positive roots of some transcendent equation involving Bessel functions of the first kind. Orthogonal means that
\[
\left\langle \phi_n (x) , \phi_k (x) \right\rangle = \int_0^{\ell} J_{\nu} \left( \mu_n \frac{x}{\ell} \right) J_{\nu} \left( \mu_k \frac{x}{\ell} \right) x\,{\text d}x = \begin{cases} 0, & \ \mbox{ if } \quad n \ne k ,
\\
\| J_{\nu} \|^2 , & \ \mbox{ when } \quad n=k ,
\end{cases}
\]
where the value of the norm squared, \( \| J_{\nu} \|^2 , \) depends on the boundary condition at the right endpoint x = ℓ.
Orthogonality of Bessel's functions
For any real number α ∈ ℝ, the Bessel equation with a parameter
\begin{equation} \label{EqOrtho.1}
x^2 y'' + x\,y' + \left( \alpha^2 x^2 - \nu^2 \right) y = 0 \qquad \mbox{or in self-adjoint form} \qquad \frac{\text d}{{\text d}x} \left( x\, \frac{{\text d}y}{{\text d}x} \right) + \left( \alpha^2 x - \frac{\nu^2}{x} \right) y = 0
\end{equation}
has a bounded solution
\[
\phi (x) = J_{\nu} \left( \alpha \,x \right) ,
\]
which can be justified by direct substitution. For two distinct positive numbers k1 and k2, we consider two functions
\[
\phi_1 (x) = J_{\nu} \left( k_1 \,x \right) \qquad \mbox{and} \qquad \phi_2 (x) = J_{\nu} \left( k_2 \,x \right) .
\]
They are solutions of equations
\[
\frac{\text d}{{\text d}x} \left( x\, \frac{{\text d} \phi_1 (x)}{{\text d}x} \right) + \left( k_1^2 x - \frac{\nu}{x} \right) \phi_1 (x) = 0
\]
and
\[
\frac{\text d}{{\text d}x} \left( x\, \frac{{\text d} \phi_2 (x)}{{\text d}x} \right) + \left( k_2^2 x - \frac{\nu}{x} \right) \phi_2 (x) = 0
\]
respectively. Multiplying the forme by ϕ2(x) and the latter by ϕ1(x), and subtracting the results, we obtain
\[
\left( k_1^2 - k_2^2 \right) \phi_1 (x)\,\phi_2 (x)\,x = - \frac{\text d}{{\text d}x} \left( x\, \frac{{\text d} \phi_1 (x)}{{\text d}x} \right) \phi_2 (x) + \frac{\text d}{{\text d}x} \left( x\, \frac{{\text d} \phi_2 (x)}{{\text d}x} \right) \phi_1 (x) .
\]
Integrating both sides of the latter with respect to x ∈ [0, ℓ], we get
\[
\left( k_1^2 - k_2^2 \right) \int_0^{\ell} \phi_1 (x)\,\phi_2 (x)\,x \,{\text d}x = - \int_0^{\ell} {\text d}x\, \frac{\text d}{{\text d}x} \left( x\, \frac{{\text d} \phi_1 (x)}{{\text d}x} \right) \phi_2 (x) + \int_0^{\ell} {\text d}x\, \frac{\text d}{{\text d}x} \left( x\, \frac{{\text d} \phi_2 (x)}{{\text d}x} \right) \phi_1 (x) .
\]
Performing integration by parts shows
\[
- \int_0^{\ell} {\text d}x\, \frac{\text d}{{\text d}x} \left( x\, \frac{{\text d} \phi_1 (x)}{{\text d}x} \right) \phi_2 (x) + \int_0^{\ell} {\text d}x\, \frac{\text d}{{\text d}x} \left( x\, \frac{{\text d} \phi_2 (x)}{{\text d}x} \right) \phi_1 (x) = \left. x\, \frac{{\text d} \phi_2 (x)}{{\text d}x} \, \phi_1 (x) - x\, \frac{{\text d} \phi_1 (x)}{{\text d}x} \, \phi_2 (x) \right\vert_{x=0}^{x=\ell} .
\]
If ν > 1, the lower limit becomes zero, and we get
\[
\left( k_1^2 - k_2^2 \right) \int_0^{\ell} \phi_1 (x)\,\phi_2 (x)\,x \,{\text d}x = \ell\left. \frac{{\text d} \phi_2 (x)}{{\text d}x} \right\vert_{x=\ell} \, \phi_1 (\ell ) - \ell\, \left. \frac{{\text d} \phi_1 (x)}{{\text d}x} \right\vert_{x=\ell} \, \phi_2 (\ell )
\]
Upon setting k1 = μn/ℓ and k2 = μk/ℓ, we obtain the integral relation
\begin{equation} \label{EqOrtho.2}
\frac{\left( \mu_n^2 - \mu_k^2 \right)}{\ell^2} \int_0^{\ell} {\text d}x \,x\,J_{\nu} \left( \mu_n \frac{x}{\ell}\right) J_{\nu} \left( \mu_k \frac{x}{\ell}\right) = \mu_k J_{\nu} \left( \mu_n \right) J'_{\nu} \left( \mu_k \right) - \mu_n J_{\nu} \left( \mu_k \right) J'_{\nu} \left( \mu_n \right) .
\end{equation}
If parameters μn and μk are chosen in a way to annihilate the right-hand side of Eq.\eqref{EqOrtho.2}, we get orthogonality of Bessel's functions. We consider three important cases of boundary conditions for which Bessel's functions are orthogonal.
Dirichlet boundary conditions
\[
J_{\nu} (\mu ) = 0.
\]
Then right-hand side of Eq.\eqref{EqOrtho.2} wil be zero for n ≠ k. So we need to determine
\[
\left\| J_{\nu} \left( \mu_n \frac{x}{\ell}\right) \right\|^2 = \left\langle J_{\nu} \left( \mu_n \frac{x}{\ell}\right) , J_{\nu} \left( \mu_n \frac{x}{\ell}\right) \right\rangle = \int_0^{\ell} J_{\nu}^2 \left( \mu_n \frac{x}{\ell}\right) x\,{\text d}x .
\]
We find its value by taking the limit as k → μn in the orthogonality relation \eqref{EqOrtho.2}:
\[
\| J_{\nu} \|^2 = \lim_{k\to \mu_n} \,\frac{\ell^2}{k^2 - \mu_n^2} \left[ \mu_n J_{\nu} \left( k \right) J'_{\nu} \left( \mu_n \right) - k\, J_{\nu} \left( \mu_n \right) J'_{\nu} \left( k \right) \right]
\]
Application of the l'Hôpital's rule yields
\[
\| J_{\nu} \|^2 = \lim_{k\to \mu_n} \frac{\ell^2}{2k} \,\frac{\text d}{{\text d}k} \left\{ \mu_n J_{\nu} \left( k \right) J'_{\nu} \left( \mu_n \right) \right\} = \frac{\ell^2}{2}\, \left[ J'_{\nu} \left( \mu_n \right) \right]^2 = \frac{\ell^2}{2}\, \left[ J_{\nu +1} \left( \mu_n \right) \right]^2 .
\]
Thus, we have
\begin{equation} \label{EqOrtho.3}
\left\langle J_{\nu} \left( \mu_n \frac{x}{\ell}\right) , J_{\nu} \left( \mu_k \frac{x}{\ell}\right) \right\rangle = \begin{cases}
0, & \ \mbox{ if } \quad n\ne k ,
\\
\frac{\ell^2}{2}\,J_{\nu +1} \left( \mu_n \right) , & \ \mbox{ when }\quad n=k.
\end{cases}
\end{equation}
Neumann boundary conditions
\[
J'_{\nu} (\mu ) = 0.
\]
Then the right-hand side of Eq.\eqref{EqOrtho.2} will be zero for n ≠ k. To determine the value of square norm when n = k, we again apply the l'Hôpital's rule and obtain
\begin{equation} \label{EqOrtho.4}
\left\langle J_{\nu} \left( \mu_n \frac{x}{\ell}\right) , J_{\nu} \left( \mu_k \frac{x}{\ell}\right) \right\rangle = \begin{cases}
0, & \ \mbox{ if } \quad n\ne k ,
\\
\frac{\ell^2}{2}\,J_{\nu} \left( \mu_n \right) , & \ \mbox{ when }\quad n=k.
\end{cases}
\end{equation}
Boundary conditions of the third kind
\[
a \ell\,J_{\nu} (\mu ) + b\,\mu\,J'_{\nu} (\mu ) =0 ,
\]
where 𝑎 and b are some real numbers.
It is not hard to verify that the right-hand side of Eq.\eqref{EqOrtho.2} will be zero for n ≠ k. To determine the value of square norm when n = k, we take the limit
\[
\| J_{\nu} \|^2 = \int_0^{\ell} J_{\nu}^2 \left( \mu_n \frac{x}{\ell} \right) x\,{\text d}x
= \lim_{k\to \mu_n} \,\frac{\ell^2}{k^2 - \mu_n^2} \left[ \mu_n J_{\nu} \left( k \right) J'_{\nu} \left( \mu_n \right) - k\, J_{\nu} \left( \mu_n \right) J'_{\nu} \left( k \right) \right]
\]
We again apply the l'Hôpital's rule and obtain
\begin{align*}
\| J_{\nu} \|^2 &= \frac{\ell^2}{2\,\mu_n}\lim_{k\to \mu_n} \frac{\text d}{{\text d}k} \left\{ \mu_n J_{\nu} \left( k \right) J'_{\nu} \left( \mu_n \right) - k\, J_{\nu} \left( \mu_n \right) J'_{\nu} \left( k \right) \right\}
\\
&= \frac{\ell^2}{2\,\mu_n} \lim_{k\to \mu_n} \left\{ \mu_n J'_{\nu} \left( k \right) J'_{\nu} \left( \mu_n \right) - J_{\nu} \left( \mu_n \right) J'_{\nu} \left( k \right) - k\, J_{\nu} \left( \mu_n \right) J''_{\nu} \left( k \right) \right\}
\\
&= \frac{\ell^2}{2\,\mu_n} \left\{ \mu_n J'_{\nu} \left( \mu_n \right) J'_{\nu} \left( \mu_n \right) - J_{\nu} \left( \mu_n \right) J'_{\nu} \left( \mu_n \right) - \mu_n J_{\nu} \left( \mu_n \right) J''_{\nu} \left( \mu_n \right) \right\} .
\end{align*}
From Bessel's equation, we have
\[
-\mu\, J''_{\nu} (\mu ) = J'_{\nu} (\mu ) + \left( \mu - \frac{\nu^2}{\mu} \right) J_{\nu} (\mu ) .
\]
So
\[
-\mu\,J_{\nu} (\mu )\,J''_{\nu} (\mu ) = J_{\nu} (\mu )\,J'_{\nu} (\mu ) + \left( \mu - \frac{\nu^2}{\mu} \right) J_{\nu} (\mu )\,J_{\nu} (\mu ) ,
\]
and we get
\[
\| J_{\nu} \|^2 = \frac{\ell^2}{2} \left\{ \left[J'_{\nu} (\mu_n ) \right]^2 + \left( 1 - \frac{\nu^2}{\mu^2_n} \right) J_{\nu}^2 (\mu_n ) \right\}
\]
- Bowman, Frank Introduction to Bessel Functions (Dover: New York, 1958). ISBN 0-486-60462-4. QA408.B68
- Dutka, J., On the early history of Bessel functions, Archive for History of Exact Sciences, volume 49, pages 105–134 (1995). https://doi.org/10.1007/BF00376544
- Watson, G.N., A Treatise on the Theory of Bessel Functions,
Return to Mathematica page
Return to the main page (APMA0340)
Return to the Part 1 Matrix Algebra
Return to the Part 2 Linear Systems of Ordinary Differential Equations
Return to the Part 3 Non-linear Systems of Ordinary Differential Equations
Return to the Part 4 Numerical Methods
Return to the Part 5 Fourier Series
Return to the Part 6 Partial Differential Equations
Return to the Part 7 Special Functions