Kelvin functions
\[
e^{x \left( z - 1/z \right) /2} = \sum_{n=-\infty}^{\infty} z^n J_n (x)
\]
- Bowman, Frank Introduction to Bessel Functions (Dover: New York, 1958). ISBN 0-486-60462-4.
- Dutka, J., On the early history of Bessel functions, Archive for History of Exact Sciences, volume 49, pages 105–134 (1995). https://doi.org/10.1007/BF00376544
- Watson, G.N., A Treatise on the Theory of Bessel Functions,
Return to Mathematica page
Return to the main page (APMA0340)
Return to the Part 1 Matrix Algebra
Return to the Part 2 Linear Systems of Ordinary Differential Equations
Return to the Part 3 Non-linear Systems of Ordinary Differential Equations
Return to the Part 4 Numerical Methods
Return to the Part 5 Fourier Series
Return to the Part 6 Partial Differential Equations
Return to the Part 7 Special Functions