Return to computing page for the first course APMA0330
Return to computing page for the second course APMA0340
Return to Mathematica tutorial for the first course APMA0330
Return to Mathematica tutorial for the second course APMA0340
Return to the main page for the first course APMA0330
Return to the main page for the second course APMA0340
Return to Part I of the course APMA0340
Introduction to Linear Algebra with Mathematica

Preface


This section provides the general introduction to

Bessel applications


\[ e^{x \left( z - 1/z \right) /2} = \sum_{n=-\infty}^{\infty} z^n J_n (x) \]

Example 1: We consider Laplace's equation in cylindrical coordinates

\begin{align*} \frac{\partial^2 u}{\partial r^2} + \frac{1}{r}\,\frac{\partial u}{\partial r} + \frac{1}{r^2}\,\frac{\partial^2 u}{\partial \vartheta^2} + \frac{\partial^2 u}{\partial z^2} &= 0 \qquad \mbox{for} \quad 0 \le r < a, \quad 0 < z < h, \\ u(r, \vartheta , 0 ) = u(r, \vartheta , h ) &= 0 , \\ u(a, \vartheta , z) &= g(vartheta , z) . \end{align*}
By separation of variables, u(r, θ, z) = R(r) v(θ, z), we obtain
\[ \left[ R' + \frac{1}{r}\,R' \right] v(\theta , z) + R(r) \left[ \frac{1}{r^2}\,\frac{\partial^2 v}{\partial \vartheta^2} + \frac{\partial^2 v}{\partial z^2} \right] = 0 \qquad \Longrightarrow \qquad \frac{r^2 R'' + r\,R'}{R} = - \frac{1}{v} \left[ \frac{\partial^2 v}{\partial \theta^2} + r^2 \frac{\partial^2 v}{\partial z^2} \right] = \lambda \,r^2. \]
So we get a differential equation for R(r):
\[ r^2 R'' (r) + r\,R' (r) - \lambda\,r^2 R(r) = 0 , \qquad 0 \le r < a. \]
We separate variables for v(θ, z) = Θ(ϑ) Z(z) and get
\[ \Theta'' (\vartheta ) \,Z(z) + r^2 \Theta (\vartheta )\,Z'' (z) + \lambda \,r^2 \Theta (\vartheta )\,Z (z) = 0 \qquad \Longrightarrow \qquad \frac{\Theta'' (\vartheta )}{\Theta (\vartheta )} = - r^2 \frac{Z'' (z)}{Z(z)} - \lambda = -\mu . \]
So we obtain the Sturm--Liouville problem for Z(z):
\[ Z'' (z) + \lambda\,Z(z) = 0, \qquad Z(0) =0, \quad Z(h) = 0. \]
Its eigenvalues are λn = (n π/h)², to which correspond eigenfunctions
\[ Z_n (z) = \sin \left( \frac{n\pi z}{h} \right) , \qquad n=1,2,3,\ldots . \]
For function Θ(ϑ) we also get a Sturm--Liouville problem, but with periodic boundary conditions:
\[ \Theta'' (\vartheta ) + \mu\,\Theta (\vartheta ) = 0 , \qquad \Theta (\vartheta ) = \Theta (\vartheta + 2\pi ) . \]
Its solution is well-known and we have eigenvalues and eigenfunctions:
\[ \Theta_k (\vartheta ) = a_k \cos (k\vartheta ) + b_k \sin (k\vartheta ) , \qquad k=0,1,2,\ldots . \]
For function R(r), we get
\[ r^2 R'' + r\, R' - \left( k^2 + r^2 \frac{n^2 \pi^2}{h^2} \right) R(r) = 0. \]
This equation is singular at r = 0. Actually, it is a modified Bessel equation, so it has two linearly independent solutions \( I_k \left( \frac{n\pu r}{h} \right) \quad \mbox{and} \quad K_k \left( \frac{n\pu r}{h} \right) . \) However, the function Kk is unbounded at the origin, so we dismiss it. The solution in r variable becomes
\[ R_{n,k} (r) = \frac{I_k (n\pi r/h)}{I_k (n\pi a/h} , \]
which is 1 at r = 𝑎. We write the solution in the form
\[ u(r, \vartheta , z) = \frac{1}{2} \sum_{n\ge 1} a_{0,n} \,\frac{I_k (n\pi r/h)}{I_k (n\pi a/h} \,\sin \left( \frac{n\pi z}{h} \right) + \sum_{k\ge 1} \sum_{n\ge 1} \frac{I_k (n\pi r/h)}{I_k (n\pi a/h} \,\sin \left( \frac{n\pi z}{h} \right) \left[ a_{n,k} \cos (k\vartheta ) + b_{n,k} \sin (k\vartheta ) \right] , \]
where
\begin{align*} a_{n,k} &= \frac{2}{\pi h} \int_0^h {\text d} z \int_{-\pi}^{\pi} {\text d}\vartheta \,g(\vartheta , z)\,\sin \left( \frac{n\pi z}{h} \right) \cos (k\vartheta ), \qquad n=1,2,\ldots ; \quad k=0,1,2,\ldots ; \\ b_{n,k} &= \frac{2}{\pi h} \int_0^h {\text d} z \int_{-\pi}^{\pi} {\text d}\vartheta \,g(\vartheta , z)\,\sin \left( \frac{n\pi z}{h} \right) \sin (k\vartheta ), \qquad n=1,2,\ldots ; \quad k=1,2,\ldots . \end{align*}
End of Example 1

 

  1. Bowman, Frank Introduction to Bessel Functions (Dover: New York, 1958). ISBN 0-486-60462-4.
  2. Dutka, J., On the early history of Bessel functions, Archive for History of Exact Sciences, volume 49, pages 105–134 (1995). https://doi.org/10.1007/BF00376544
  3. Watson, G.N., A Treatise on the Theory of Bessel Functions,

 

Return to Mathematica page
Return to the main page (APMA0340)
Return to the Part 1 Matrix Algebra
Return to the Part 2 Linear Systems of Ordinary Differential Equations
Return to the Part 3 Non-linear Systems of Ordinary Differential Equations
Return to the Part 4 Numerical Methods
Return to the Part 5 Fourier Series
Return to the Part 6 Partial Differential Equations
Return to the Part 7 Special Functions