Preface
This section discusses two modifications of the laplace transformations: the Elzaki and Sumaru transformations. Sometimes these transforms are preferable for solving differential equations.
Return to computing page for the second course APMA0340
Return to Mathematica tutorial for the second course APMA0340
Return to the main page for the course APMA0330
Return to the main page for the course APMA0340
Return to Part VI of the course APMA0330
Glossary
Elzaki and Sumudu transforms
The Sumudu transform was proposed by G.K. Watugala in 1993:
The ELzaki and Laplace transforms exhibit a duality relation expressed as follows
-
Convolution property:
\begin{align*} S \left[ f(t) * g(t) \right] (\nu ) &= \nu\,S \left[ f(t) \right] (\nu ) \, \nu\,S \left[ g(t) \right] (\nu ) = \nu^2 S \left[ f(t) \right] S \left[ g(t) \right] ; \\ E \left[ f(t) * g(t) \right] (\nu ) &= \frac{1}{\nu}\,E \left[ f(t) \right] E \left[ g(t) \right] \end{align*}where \( (f*g)(t) = \int_0^t f(\tau )\,g(t-\tau )\,{\text d}\tau = (g*f)(t) \) is the convolution of two functions.
-
Differentiation property:
\begin{align*} S \left[ f' (t) \right] (\nu ) &= \frac{1}{\nu}\,S \left[ f (t) \right] (\nu ) - \frac{1}{\nu}\,f(+0) , \\ S \left[ f'' (t) \right] (\nu ) &= \frac{1}{\nu^2}\,S \left[ f (t) \right] (\nu ) - \frac{1}{\nu^2}\,f(+0) - \frac{1}{\nu}\,f'(+0) , \\ E \left[ f' (t) \right] (\nu ) &= \frac{1}{\nu} \,E \left[ f (t) \right] (\nu ) - \nu\,f(+0) , \\ E \left[ f'' (t) \right] (\nu ) &= \frac{1}{\nu^2} \,E \left[ f (t) \right] (\nu ) - \nu\,f'(+0) -f(+0) , \\ S \left[ t\,f' (t) \right] (\nu ) &= \\ S \left[ t^2 f' (t) \right] (\nu ) &= \\ E \left[ t\,f' (t) \right] (\nu ) &= \nu^2 \frac{\text d}{{\text d}\nu} \left[ \frac{1}{\nu}\, E \left[ f (t) \right] (\nu ) -\nu\,f(0) \right] - E \left[ f (t) \right] (\nu ) + \nu^2 f(0) , \\ E \left[ t^2 f' (t) \right] (\nu ) &= \nu^4 \frac{{\text d}^2}{{\text d}\nu^2} \left[ \frac{1}{\nu}\, E \left[ f (t) \right] (\nu ) - \nu\,f(0) \right] , \\ S \left[ t\,f'' (t) \right] (\nu ) &= \\ S \left[ t^2 f'' (t) \right] (\nu ) &= \\ E \left[ t\,f'' (t) \right] (\nu ) &= \nu^2 \frac{\text d}{{\text d}\nu} \left[ \frac{1}{\nu^2}\, E \left[ f (t) \right] (\nu ) -\nu\,f'(0) - f(0) \right] - \frac{1}{\nu}\,E \left[ f (t) \right] (\nu ) + \nu\, f(0) + \nu^2 f' (0) , \\ E \left[ t^2 f'' (t) \right] (\nu ) &= \nu^4 \frac{{\text d}^2}{{\text d}\nu^2} \left[ \frac{1}{\nu^2}\, E \left[ f (t) \right] (\nu ) - f(0) - \nu\,f' (0) \right] . \end{align*}
Example: The following formulas follow from the corresponding Laplace transformations:
Example: Consider the Bessel equation subject to the initial condition
Example: Consider the initial value problem for the Euler equation
Now if the Elzaki transform to the given equation is applied, it yields
- Ahmed, S.A., A Comparison between Modified Sumudu Decomposition Method and Homotopy Perturbation Method, Scientific Research, 2018, Vol. 9, No. 3, doi: 10.4236/am.2018.93014
- Asiru, M.A., Further properties of the Sumudu transform and its applications, International Journal of Mathematical Education in Science and Technology, 2002, Vol. 33, No. 3, pp. 441--449.
- Belgacem F.B.M. and Karaballi, A.A., “Sumudu transform fundamental properties investigations and applications,” Journal of Applied Mathematics and Stochastic Analysis, pp. 1–23, 2006.
- Eltayeb, H., Kılıçman, A., and Fisher, B., A new integral transform and associateddistributions,Integral Transforms Spec. Funct.21(2010) 367-379.
- Elzaki, T.M. and Biazar, J., Homotopy Perturbation Method and Elzaki Transform for Solving System of Nonlinear Partial Differential Equations, World Applied Sciences Journal, 2013, Vol. 24 (7): 944-948; doi: 10.5829/idosi.wasj.2013.24.07.1041
- Elzaki, T.M. and Kim, H., The Solution of Burger’s Equation by Elzaki Homotopy Perturbation Method, Applied Mathematical Sciences,2014, Vol. 8, No. 59, 2931 - 2940; http://dx.doi.org/10.12988/ams.2014.44314
- Hussain M.G.M. and Belgacem, F.B.M., Transient solutions of Maxwell’s equations based on Sumudu transform, Progress in Electromagnetics Research, 2007, Vol. 74, 273-289.
- V. G. Gupta and B. Sharma, “Application of Sumudu transform in reaction-diffusion systems and nonlinear waves,” Applied Mathematical Sciences, vol. 4, no. 9, pp. 435–446, 2010.
- Kadem, A., Solving the one-dimensional neutron transport equation using Cheby-shev polynomials and the Sumudu transform, Analele Universitatii din Oradea. Fascicola Matematica, 2005, Vol.12, pp. 153-171.
- Kılıçman A. and Eltayeb, H., On the applications of Laplace and Sumudu transforms, Journal of the Franklin Institute, 2010, vol. 347, no. 5, pp. 848–862, 2010.
- Kılıçman A. and Eltayeb, H., On the second order linear partial differential equations with variable coefficients andd ouble Laplace transform, Far East J. Math.Sci. (FJMS)34(2009) 257-270.
- Kılıçman A. and Eltayeb, H., A note on integral transform and partial differentialequations, Appl. Math. Sci. (Ruse)4(2010) 109-118.
- Kılıçman A. and Eltayeb, H., On a new integral transform and differential equations, Mathematical Problems in Engineering, 2010, Volume 2010, Article ID 463579, 13 pages http://dx.doi.org/10.1155/2010/463579
- Kılıçman A., Eltayeb, H., Atan, A.M., A note on the comparison between Laplace and Sumudu transforms, Bulletin of the Iranian Mathematical Society, 2011, Vol.37, No. 1, pp 131-141.
- Kılıçman A. and Gadain, H.E., An application of double Laplace transform anddouble Sumudu transform,Lobachevskii J. Math.30(2009) 214-223.
- Pandey, R.K. and Mishea, H.K., Numerical simulation of time-fractional fourth order differential equations via homotopy analysis fractional Sumudu transform method, American Journal of Numerical Analysis, 2015, Vol. 3 No. 3, 52-64 DOI: 10.12691/ajna-3-3-1
- Rathore, S., Kumar, D., Singh, J., Gupta, S., Homotopy analysis Sumudu transform method for nonlinear equations, Int. J. Industrial Mathematics, 2012, Vol. 4, No. 4, Article ID IJIM-00204, 13 pages
- Singh, J., Kumar, D., and Sushila, Homotopy perturbation Sumudu transform method for nonlinear equations, Adv. Theor. Appl. Mech., Vol. 4, 2011, no. 4, 165 - 175
- Watugala, G.K., Sumudu Transform: a new integral transform to solve differential equations and control engineering problems, International Journal of Mathematical Education in Science and Technology, 1993, Vol. 24, No. 1, pp. 35-43
- Watugala, G.K., The Sumudu transform for functions of two variables, Mathematical Engineering in Industry, 2002, vol. 8, no. 4, pp. 293–302.
- Weerakoon, S., “Complex inversion formula for Sumudu transform,” International Journal of Mathematical Education in Science and Technology, vol. 29, no. 4, pp. 618–621, 1998.
- Weerakoon, S., Application of Sumudu transform to partial differential equations, International Journal of Mathematical Education in Science and Technology, vol. 25, no. 2, pp. 277–283, 1994.
- Zhang, J., A Sumudu based algorithm for solving differential equations, Computer Science Journal of Moldova, 2007, Vol. 15(3), pp. 303-313
Return to Mathematica page
Return to the main page (APMA0330)
Return to the Part 1 (Plotting)
Return to the Part 2 (First Order ODEs)
Return to the Part 3 (Numerical Methods)
Return to the Part 4 (Second and Higher Order ODEs)
Return to the Part 5 (Series and Recurrences)
Return to the Part 6 (Laplace Transform)
Return to the Part 7 (Boundary Value Problems)